Recent Precipitation, Precipitation Measurements, and more false claims of Global Warming

Bob Endlich <u>bendlich@msn.com</u> 18 November 2017 Cruces Atmospheric Sciences Forum Houston: America First Energy Conference 9 November 2017

One-Day event Topics: Climate, Energy, Law, Policy, EPA

All sessions are now broken out at this site: <u>http://americafirstenergy.org/</u>

Among new friends: Dr Hal Dorian of The Right Climate Stuff

http://www.therightclimatestuff.com/

Hal will accept if we invite him to speak here! He wants to come

Recommend to read book: The Prize by Daniel Yergin "best history of oil ever written."

Some might want to visit the Cooler Heads Coalition web site, part of Competitive Enterprise Institute <u>http://www.globalwarming.org/category/blog/</u>

The entire legal basis for the EPA taking action and the resultant CO2 Endangerment Finding is based on fraud or at least a fraudulent claim in the case <u>Massachusetts vs.</u> <u>EPA.</u> Massachusetts sued EPA over the notion that human use of fossil fuels has increased the rate of sea level rise. It hasn't.

But, the science of this was never studied or presented in arguments before the courts.

This graphic came from David Stephenson, Cesar Rodney Institute, his presentation is on line at http://americafirstenergy.org/cr3ativconference/panel-6b-reforming-epa/

Improvements Stalled

- On average, air quality improved 2% a year from 1980 to 2009, but only 1% a year during President Obama's term
- Ozone improved 1% a year from 1980 to 2009, but only ½% total during President Obama's term
- Superfund site construction completion rate under President Bush was 35 a year, under President Obama 16 a year
- Chesapeake Bay water quality improved 49% under state compact from 1985 to 2010, no improvement since EPA took over in 2010
- Diminishing Returns!

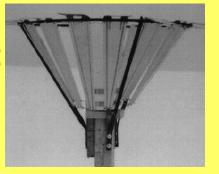
This graphic came from Myron Ebell, Competitive Enterprize Institute, his presentation is on line at <u>http://americafirstenergy.org/cr3ativconference/panel-6b-reforming-epa/</u>

What is the goal of all the Obama climate regulations and policies?

- Organize the entire U. S. and global economies around programs to reduce carbon dioxide emissions; that is, around reducing use of coal, oil, and natural gas.
- Turn robust economies based on producing and using abundant, affordable energy (for example, Texas) into economies based on using much less, much more expensive energy (for example, California).

New words for our dictionaries

Alter:


DFIR Dual Fence Intercomparison Reference:

Tretyakov:

Outline

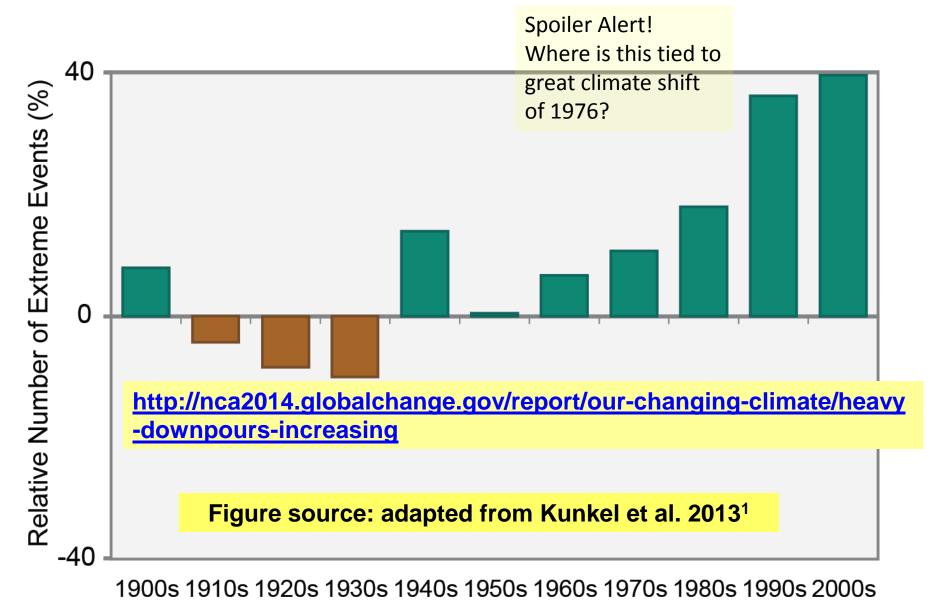
Alarmist claims of increasing heavy rains tied to "global warming"

Background on precipitation types

Background on precipitation measurements

Precipitation Measurement Deficiencies

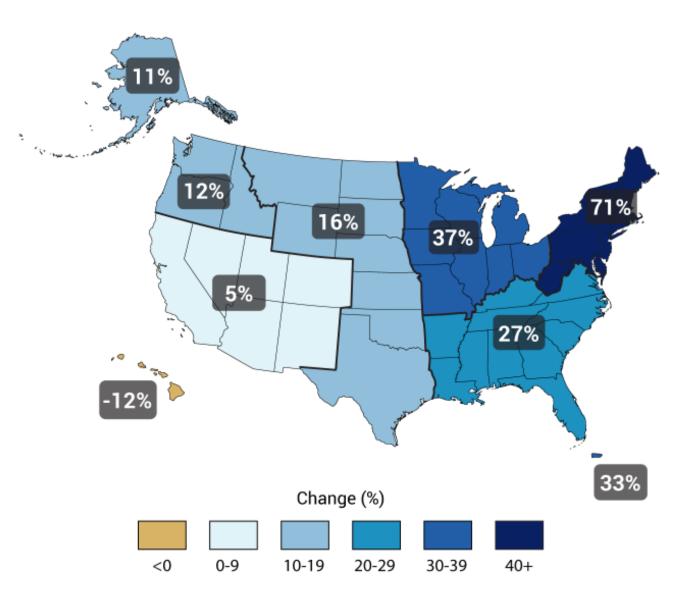
David Legates' Analysis


ASOS Precipitation Measurements

ASOS Improvement Program and newer changes to precipitation instrumentation

Proof, the "heavy rains increasing" argument is specious.

Alarmist claims of increasing heavy rain tied to "global warming"


Observed U.S. Trend in Heavy Precipitation

Decade

http://nca2014.globalchange.gov/report/our-changing-climate/heavy-downpours-increasing

Figure 2.18: Observed Change in Very Heavy Precipitation

Ø

http://www.ucsusa.org/global warming/science and impacts/impacts/heavy-flooding-and-global-warming.html#.Wg0K7GCWz1I

Recent heavy rains and flooding in the <u>Northeast</u>, Midwest, and Great Plains are consistent with a warming planet, and such events are expected to become more common over time.

As average temperatures in regions across the country have gone up, more rain has fallen during the heaviest downpours.

Very heavy precipitation events, defined as the heaviest one percent, now drop 67 percent more precipitation in the Northeast, 31 percent more in the Midwest and 15 percent more in the Great Plains, including the Dakotas, than they did 50 years ago.

This happens because warmer air holds more moisture.

Northern Plains brace for flooding; power still out in Northeast March 17, 2010 7:29 a.m. EDT

CNN iReporters Tomas Rozar and Clem Carfaro provided this aerial image of flooding in Bound Brook, New Jersey.

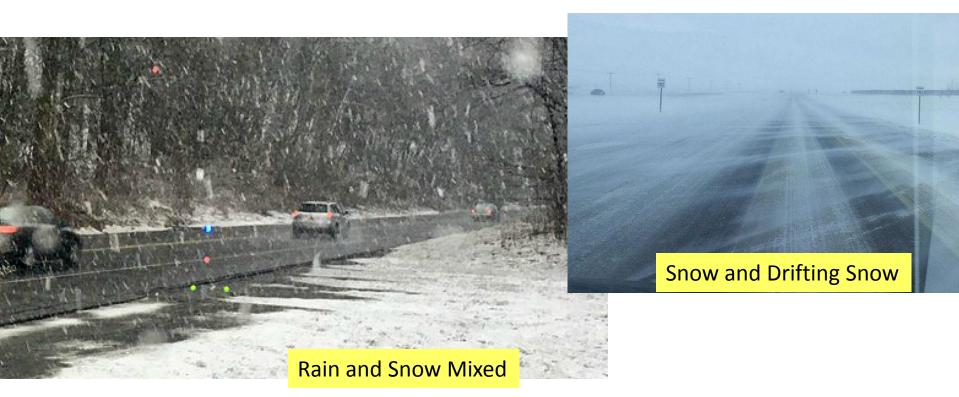
Precipitation Types

60	61	62	63	64	65 🔶	66 •	67 ••	68 *	69 *	
Rain, light, intermittent, not freezing.	Rain, light, continous, not freezing.	Rain, moderate, intermittent, not freezing.	Rain, moderate, continuous, not freezing.	Rain, heavy, intermittent, not freezing.	Rain, heavy, continous, not freezing.	Freezing rain, light.	Freezing rain, moderate or heavy.	Rain and snow mixed, light.	Rain and snow mixed, moderate or heavy.	
70 *	71	72 _* *	73 **	74 * *	75 * **	76	77 	78 	⁷⁹	
Snow, light, intermittent.	Snow, light, continous.	Snow, moderate, intermittent.	Snow, moderate, continous.	Snow, heavy, intermittent.	Snow, heavy, continous.	Ice needles, with or without fog.	Snow grains, with or without fog.	Snow crystals, with or without fog.	Ice pellets (sleet).	
80 ♥	⁸¹ ∲	82	83 •	84 •	85 ∗ ▽	86 * ∀	87	88 ☆	⁸⁹ ∱	
Rain showers, light.	Rain showers, moderate or heavy.	Rain showers, torrential.	Rain/snow showers mixed, light.	mixed, moderate or heavy.	Snow showers, light.	Snow showers, moderate or heavy.	Ice pellet showers, light.	Ice pellet showers, moderate or heavy.	Hail, light, not associated with thunder.	
90 ∯	⁹¹ []•	⁹²]	⁹³	94	95 🏹	96 ▲	97 •/*	98 🗲	99 △	
Hail, moderate or heavy, not associated with thunder.	Rain, light. Thunder heard during past hour but not now.	Rain, moderate or heavy Thunder heard during past hour but not now.	Light snow or rain/snow mixed with hail. Thunder heard during past hour.	Moderate or heavy snow or rain/snow with hail. Thunder in past hour.	Thunderstorm, light or moderate. Rain or snow, but no hail.	Thunderstorm, light or moderate, with hail.	Thunderstorm, severe. Rain or snow, but no hail.	Thunderstorm, with duststorm or sandstorm.	Thunderstorm, severe, with hail.	

ies, we grant

Copyright ©1998 WEATHER GRAPHICS TECHNOLOGIES, P.O. Box 450211, Garland TX 75045 www.weathergraphics.com

The 99 Synoptic Weather types used in World Meteorological **Organization Codes**


http://www. weathergraphics.com/ dl/wxchart.pdf

	00	01 ()	⁰² -()-	03	04 ~~~~	05	⁰⁶ ς	07	80	⁰⁹ (-S-)	
	Cloud development not observed/observable during past hour.	Clouds generally dissoMing during past hour.	State of sky unchanged during past hour.	Clouds generally forming or developing during past hour.	Visibility reduced by smoke.	Haze.	Dust suspended in the air, but not raised by wind.	Uust or sand raised by wind.	Dust devils now or within pasthour.	Duststorm or sandstorm not at station but within sight.	
	10	11	12	13 <	14	¹⁵)●(¹⁶ (•)	¹⁷ (K)	18 ∀	¹⁹)(
	Misi.	Patches of shallow fog at station, not deeper than 2 m (10 m at sea).	Continuous shallow log at station, not deeper than 2 m (10 m at sea).	Lightning visible, but no thunder heard.	Precipitation visible but not reaching ground at station.	Precipitation reaching the ground not at or near the station but at a distance.	Precipitation reaching the ground not at the station but nearby.	Thunder heard but no precipitation at the station.	Wind squail now or during the past hour.	Tornado, waterspout, or funnel cloud observed now or during past hour.	
	20	21	22 *	23	24	²⁵ ♥	²⁶ *	²⁷ ⊖]	28	29	
	Recent drizzle (not freezing, not showers) during past hour.	Recent rain (not freezing, not showers) during past hour.	Recent snow (not showers) during past hour.	Recent rain and snow (not showers) during past hour.	Freezing drizzle or rain (not showers), not now but during past hour.	Rain showers, not now but during past hour.	Snow showers, not now but during past hour.	Hail or hail and rain, not now but during past hour.	ہے Fog, not now but during past hour.	Thunderstorm, with or without precipitation, not now but during past hour.	
	³⁰ S [³¹ S	32	33	³⁴ 🗲	35	36	37 ↔	38 +	³⁹	
/	Slight/moderate duststorm or sandstorm, decreased during hour.	Slight/moderate duststorm or sandstorm, no change during hour.	Slight/moderate duststorm or sandstorm, increased during hour.	Severe duststorm or sandstorm, which has decreased during hour.	Severe duststorm or sandstorm, no change during past hour.	Duststorm or sandstorm, severe, has increased during past hour.	Drifting snow, slight or moderate.	Dritting snow, heavy.	Blowing snow, slight or moderate.	Blowing snow, heavy.	
	40()	41	42	43	44	45	46	47	48	49 🗸	
	Fog at a distance but not at station during past hour.	Patchy fog.	Fog, sky discernable, and has become thinner during past hour.	Fog, sky not discernable, and has become thinner during past hour.	Fog, sky discernable, no change during past hour.	Fog, sky not visible, no change during past hour.	Fog, sky visible, has begun or become thicker during past hour.	Fog, sky not visible, has begun or become thicker during past hour.	Freezing fog, sky visible.	Freezing fog, sky not visible.	
	⁵⁰ 9	⁵¹ ۹ ۹	52 •	⁵³	54	⁵⁵	⁵⁶	57	58 •	59	
	Drizzie, light, intermittent, not freezing.	Drizzle, light, continous, not freezing.	Ditzzle, moderale, internittent, not freezing.	Drizzle, moderate, continuous, not freezing.	Drizzle, heavy, internitient, not heezing.	Drizzle, heavy, continous, not freezing.	Freezing drizzle, light.	Freezing drizzle, moderate or heavy.	Drizzle and rain mixed, light.	Drizzle and rain mixed, moderale or heavy.	
	⁶⁰ •	61	62	⁶³	64	⁶⁵ 🔹	⁶⁶	67 ••	68 • *	69 * *	
	Rain, light, intermittent, not freezing.	Rain, light, continous, not freezing.	Rain, moderate, intermittent, not freezing.	Rain, moderate, continuous, not freezing.	Rain, heavy, intermittent, not freezing.	Rain, heavy, continous, not freezing.	Freezingrain, light.	Freezing rain, moderale or heavy.	Rain and snow mixed, light.	Rain and snow mixed, moderate or heavy.	
	⁷⁰ *	71 **	72 _*	73 **	74 * *	75 * **	76	77 <u>\$</u>	78 — X —	⁷⁹	
	Snow, light, intermittent.	Snow, light, continous.	Snow, moderate, internitient.	Snow, moderate, continous.	Snow, heavy, internitient.	Snow, heavy, continous.	ice needles, with or without log.	Snow grains, with or without log.	Snow crystals, with or without log.	ice peliets (sieet).	
	⁸⁰ ₹	⁸¹ ∲	82 💲	83 🌻	84 • ∀	85 * V	86 ∗ ∀	87 ☆	88 ⊖	⁸⁹ ∱	
	Rain showers, light.	Rain showers, moderate or heavy.	Rain showers, torrential.	Rain/snow showers mixed, light.	Rain/snow showers mixed, moderate or heavy.	Snow showers, light.	Snow showers, moderate or heavy.	ice pellet showers, light.	Ice pellet showers, moderate or heavy.	Hail, light, not associated with thunder.	
	90 ₹	⁹¹ K]•	⁹² K	⁹³ 🖓	94 ∏≵	⁹⁵ ₹	% ₫	97 •/*	⁹⁸ ੯	99 Å	
	Hall, moderate or heavy, not associated with thunder.	Rain, light. Thunder heard during past hour but not now.	Rain, moderate or heavy. Thunder heard during past hour but not now.	Light snow or rain/snow mixed with hail. Thunder heard during past hour.	Moderate or heavy snow or rain/snow with hail. Thunder in past hour.	Thunderstorm, light or moderate. Rain or snow, but no hall.	Thunderstorm, light or moderate, with hall.	Thunderstorm, severe. Rain or snow, but no hall.	Thunderstorm, with duststorm or sandstorm.	Thunderslorm, severe, with hall.	
i	es, we grant Copyright ©1998 WEATHER GRAPHICS TECHNOLOGIES, P.O. Box 450211, Garland TX 75045 www.weathergraphics.com										

red.

Weather is a "National Responsibility."

Nations' response to this doctrine are as varied as the nations themselves

Instruments have been developed and fielded worldwide...but...in ways determined by the nations themselves

The World Meteorological Organization, a technical arm of the UN...

<also, World Health Organization...International Civil Aviation Organization>

WMO has acted to enhance interoperability and has sponsored numerous intercomparisons between the different types of instruments:

Surface and Upper Air

Some <WMO-sponsored> results of intercomparisons among the different types of instruments...later....

Limitations on precipitation measurements

Wind, wind turbulence adversely affect instruments' ability to measure precipitation

...been known for a long time.

...higher the wind, the worse the problem.

Problem...worse with Snow, worse yet, Snow & Blowing Snow, or just Blowing Snow

Wind increases with height... instruments nearer ground might be good...heavy snow can bury the instrument...accuracy...lost.

Winds near trees and buildings can prevent a good capture by the instruments (wind shadow effect)

Ideal location might be a clearing in a wooded area or a park in urban or suburban environment

Wind "shields" have been devised and tested.

Some instruments are shielded...some unshielded...

Problem of maintenance...worse with automated and on-line processed data?

https://www.fs.fed.us/rm/pubs exp for/priest river/exp for priest river 1953 warnick.pdf

[Meteorology]

C. C. WARNICK

This old Forest Service report shows the problem of undercatchment of precipitation during the snow season at the Priest River Experimental Forest, Idaho, 1951, 1952.

Lower Curve A shows unshielded snow accumulation

Curve B Idaho Type II wind shield

Curve C Modified "Alter Type I" shield

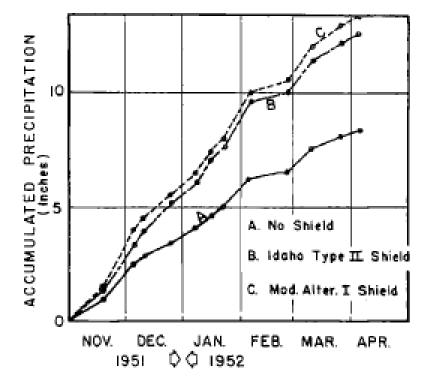
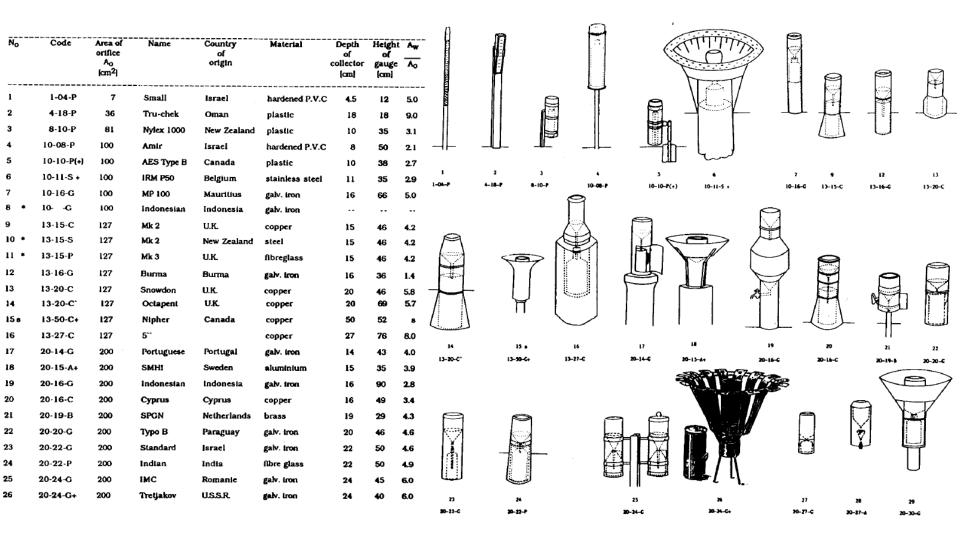
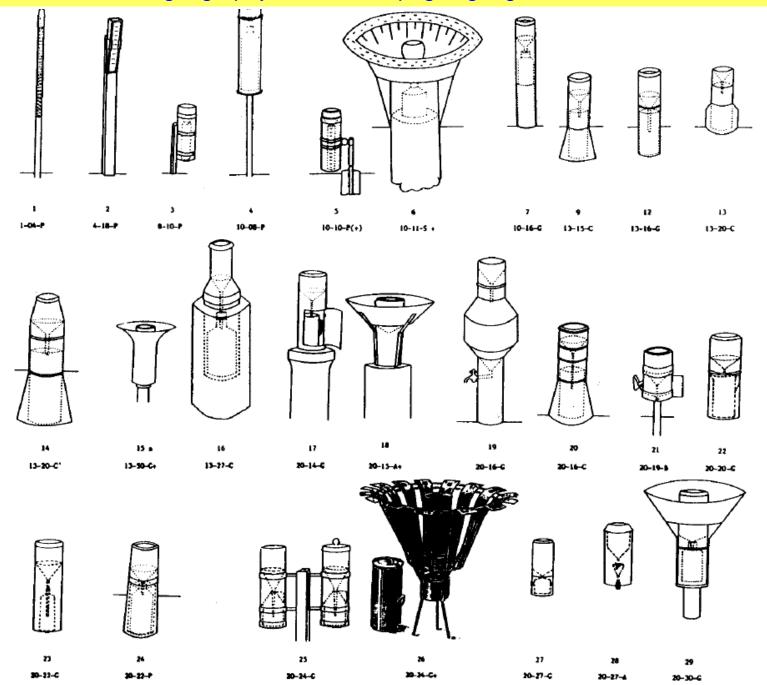
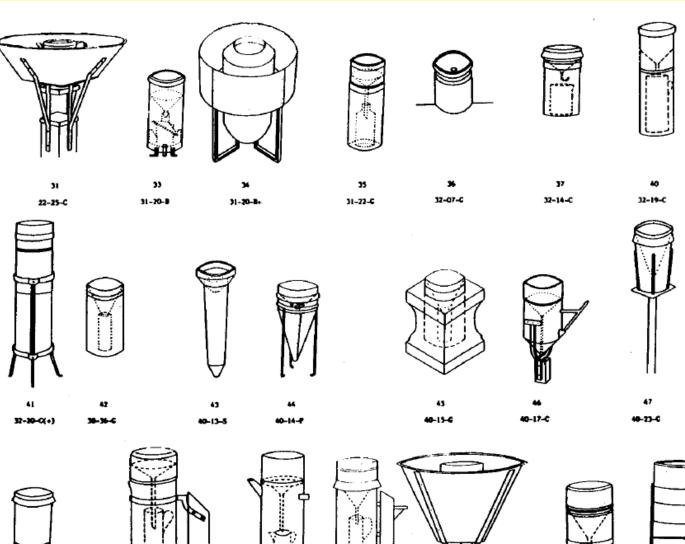



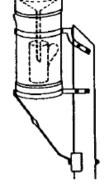
Fig. 12--Comparative winter precipitation catch in experimental U.S. Weather Bureau standard gages at Priest River Experimental Forest, Idaho

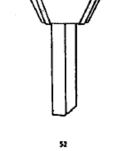

Figure 12 gives the comparative performance of three U.S. Weather Bureau standard rain gages located on Gisborne Mountain in the Priest River Experimental Forest. Here is shown the definite value of the windshield. Data on the gage with the modified Alter-I shield indicates the same positive results observed in the wind tunnel. Observations indicate that the Idaho Type II shield becomes frozen up much more quickly than the new shield and probably would cap over on occasions at Gisborne Mountain. Additional field testing is necessary to indicate whether the new shield design will prevent capping over due to formation of rime between the gage and shield.

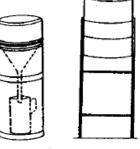
Precipitation Measuring Instruments



27	20-27-G	200	Helimann	FRG and GDR	raly two	27	43	7.1			\frown				0
28	20-27-A	200	Tognini	Switzerland	aluminium	27	50	6.0	Crep -	» ((Θ)	~		P	
29	20-30-G	200	Icelandic	Iceland	galv. iron	30	56	7.7			N II	\square		12	H
30 *	20A	200	200-100	Colombia	aluminium				BEFE						n n
31	22-25-C +	225	Norwegian	Norway	copper	25	25	3.1				一杏	-	لنسا	
32 •	31G	314	Anagnostou	Greece	galv. iron					Ì					لاا
33	31-20-B	314	RT-I	Japan	brass	20	40	3.6	10 01	AIK		\sim			
34	31-20-B+	314	RT-4	Japan	brass	20	45	3.7	31	33	×	35	*	37	40
35	31-22-G	314	China	China	galv. iron	22	59	3.5	22-25-C	31-20-0	31-20-8+	31-22-6	32-07-G	32-14-C	32-19-C
36	32-07-G	324	Manual 1508	Australia	galv. tron	7	30	1.2	\square						\bigcirc
37	32-14-C	324	S 203 DRG	Malaysia	brass	14	38	24							
38 *	32-16-C	324	ML 17	Iran	copper	16	36	2.9		6	2		\bigcirc		1\1/1
39 *	32-19-S	324	Nepal 203	Nepal	steel	19	59	3.5			9 8			\bowtie	$\overline{\mathbb{U}}$
40	32-19-C	324	Casella	U. K.	copper	19	56	3.5					NYTT		
41	32-20-C(+)	324	USWB 8"	U.S.A	copper/steel	20	68	3.2					2005		
42	38-36-C	380	Туро А	Bolivia	galv. tron	36	88	3.4	\mathbb{H}	, 					· []
43	40-13-S	400	Ville Paris	Brasil	stainless steel	13	63	2.5			√ 1. 1		\checkmark	ED)	
44	40-14-P	400	SPIEA MN	France	fibre-glass	14	44	2.0	41 42		43 44		43	44	47
45	40-15-G	401	Mexican	Mexico	galv. tron	15	36	1.7	32-20-C(+) 36-36-C	40-	⊢13-5 40-14-P		40-13-C	40-17-0	40-23-6
46	40-17-C	400	Van Dom	Netherlands	copper	17	40	3.0			\bigcirc				
47	40-23-G	400	Association	France	galv. iron	23 3	0/38	2.3						7	
48	40-45-P	400	C Type NM	France	fibre-glass	45	80	6.8	\square		1 d d l	K-Th	\\\ //	P	
49	50-15-G	500	Mountain	Austria	galv. Iron	15	56	24	M	TAN			~ \\\ //		
50	50-24-C	500	Kostlivi	Austria	galv. Iron	24	77	3.4							
51	50-25-G	500	Wild	Bulgaria	galv. tron	25	44	3.3			1	4		-	
52	50-30-B+	500	Wild	Finland	bronze	30	36	2.6		\mathbf{N}				1111	
53	50-33-C	500	Metra 886	CSSR	galv. iron	33	66	3.9	\mathbb{W}	<u>\</u>					
54	100-10-L	1000	SIAP UM8300	Italy	lacquered tron	10	44	2.3		\h \h	ļ		\square		
										Ŷ	1	11			*
										47	50	51	52	53	


https://www.colorado.edu/geography/class_homepages/geog_4331_s07/slides/week10a.pdf


https://www.colorado.edu/geography/class_homepages/geog_4331_s07/slides/week10a.pdf



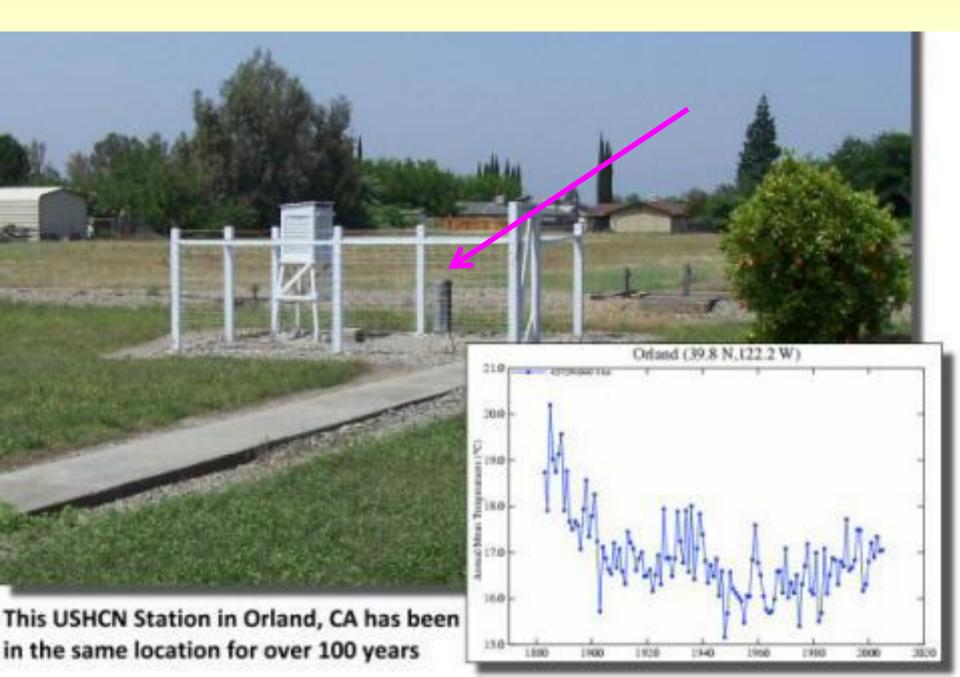
50-30-84

54 100-10-L 50-33-G

53

US standard 8-inch rain gage.

Site looks ideal today. What happens in 30 years when that nice blue spruce matures?


Reading a standard 8-inch rain gage.

This one appears to have been in this site for some time.

This site may be in Pennsylvania.

Is that corrosion or dirt on the surface of the funnel affecting the quality of the measurement?

Orland, California, Poster Child for a well-exposed station, data set posted June, 2007

NWS 80 nonrecording gauge, rainfall collector off, as used for snowfall measurement

Three Parts: 8-inch receiver funnel 8-inch overflow receptacle 2.53-inch measuring tube (--1/10tharea) Fayetteville, NC, Fischer-Porter recording rain gage, weighs the sample Rain gage appears to have been tilting over the years, introducing systematic errors.

From Steven Burt, Weather Observer's Handbook.

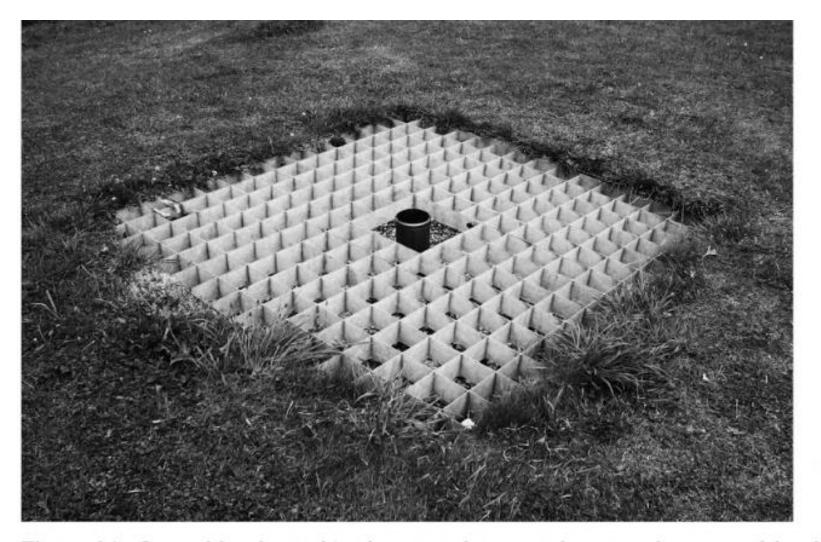
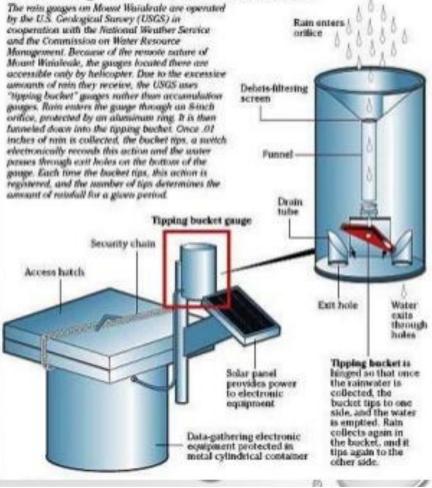



Figure 6.1. Ground-level or 'pit' raingauge; the gauge is exposed at ground level within a strong metal mesh which reduces turbulence and prevents insplash. Wallingford, Oxfordshire, England. (Photograph by the author)

TIPPING BUCKET RAIN GAUGE

Measuring Mount Waialeale's rainfall

https://wattsupwiththat.com/2011/05/13/measuring-rain-the-easy-way-using-an-automatic -logging-rain-gauge/

NWS Employee:

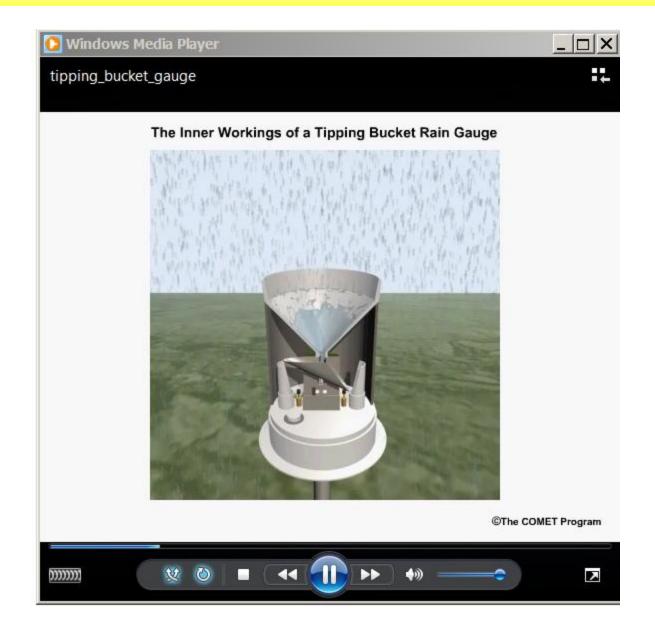
"Part of my job is to QC over a thousand tipping bucket gages hourly for input into radar precipitation estimation corrections....

... clogs and partial clogs are a constant problem.

Dew forms on the funnels first, and, if next to a dusty environment such as a gravel road or a farm field, the dust interacts with the dew and slides down to the funnel neck, creating a very effective adobe plug.

Spiders build nests inside, which interfere with the tipper movement.

Blowing leaves collect to create partial plugs, so, as mentioned above, a one-hour rain storm may dribble out for hours or days after the event.


Dirt collecting in the buckets can cause over-estimation...

During high rain rates, water is lost during the transition from the full tipper to the empty tipper.

Long term climatologies show tipping buckets collect about 70% of what a co-located 8" standard rain gage collects."

https://www.meted.ucar.edu/hydro/precip_est/part1_measurement/print.php#page_3-4-0

NCAR Video of Tipping Bucket Rain Gage; Requires login to COMET

DFIR Double Fence Intercomparison Reference

The Double Fence Intercomparison Reference gauge (DFIR, figure 1) was used as a standard for all other windshields in the WMO's intercomparison study and at the Marshall Field site study. The DFIR consists of two fences, one 4 meters in diameter and the other 12 meters in diameter, circling a Tretyakov or Geonor gauge. For the Marshall Field site study, the Geonor gauge was used almost exclusively. This system's catch as a function of windspeed has consistently proven to be 92 to 96 percent of the actual snowfall in most wind events. Unfortunately, the sheer size of the system limits its placement.

Figure 1—The double fence intercomparison reference gauge catches 92 to 96 percent of the precipitation that falls.

The full-sized DFIR is massive: 12 meters or 39 feet in diameter for the outer fence the DFIR was developed as the "Gold Standard" after numerous WM0 intercomparisons

http://journals.ametsoc.org/doi/full/10.1175/1520-0426(1998)015%3C0054% 3AAONSNP%3E2.0.CO%3B2 Tretyakov Rain Gage -- Idaho

This, other B&W "Idaho" photos, from above report, Journal of Atmospheric Technology.

Alter shield with Universal Recording Gage - Idaho

Wyoming Shield with Universal recording gage - Idaho

...Wyoming windshields were also tested at the Marshall Field site <part of NCAR, Boulder, CO>.

A Wyoming shield consists of two mesh fences slanting outward at the top.

The outer fence is 20 feet in diameter. < compared with 39-ft for DFIR>

The catch efficiency for a Geonor gauge in the Wyoming shield decreased rapidly at windspeeds higher than 4 meters per second.

A catch of about 50 percent of the DFIR was recorded at wind speeds of about 8 meters per second.

A half-scale Wyoming shield was developed by Roy Rasmussen and others for the Marshall Field site study.

Catch efficiency for a Geonor gauge in a Small Wyoming shield is less than 50 percent of the DFIR in winds higher than 5 meters per second.

Catch efficiency continues to drop to around 10 percent of the DFIR at windspeeds of 8 meters per second

This says that in snow, when winds exceed 8 m/s a Small Wyoming-shielded gage captures only 10 % of the snow that felt, for instance, in **"snow, when winds are 15-gusting 25 knots,"**

Canadian Nipher snow gauge in Idaho

https://www.fs.fed.us/t-d/pubs/htmlpubs/htm02252325/

United States Department of Agriculture Forest Service

October 2002

2500

0225-2325-MTDC

Privacy | Legal

Watershed, Soil, and Air Pubs

Search Pubs

Windshields for Precipitation Gauges and Improved Measurement Techniques for Snowfall

<u>Seth Hansen</u>, Project Assistant <u>Mary Ann Davies</u>, Project Leader

The chemistry of snow water is measured by accurately collecting snowfall amounts and analyzing the snow that has been melted—usually in a glycol mixture. The problem with current snow measurement techniques is that with almost any wind, collection efficiency is questionable, leading to large uncertainties in estimates of pollutant concentration. Most current combinations of windshields and gauges are ineffective, requiring the gauges to be maintained and monitored frequently.

The issue of measuring snow and frozen precipitation in windy situations has been heavily researched. While many gauges and windshields have been developed and tested during the last 150 years, no combination of windshield and gauge has 100-percent catch efficiency in all wind events. The World Meteorological Organization (WMO) has organized three international intercomparisons of gauges and windshields since 1959, the most recent including data collected from 1985 to 1998. The National Center for Atmospheric Research (NCAR) recently completed a study at the Marshall Field site (Rasmussen and others. 2001. Bulletin of the American Meteorological Society. 82: 4. p. 579 –595).

Figure 4—The catch efficiency for the half-scale Wyoming windshield drops rapidly as wind increases.

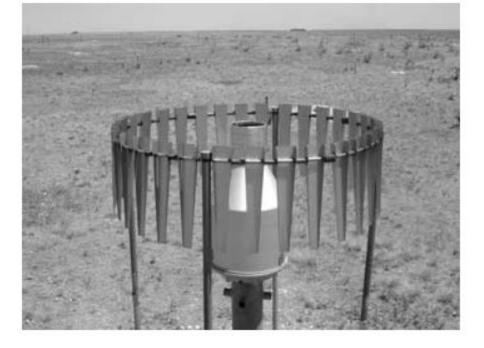


Figure 2—The Alter windshield catches little of the precipitation that falls during high winds.

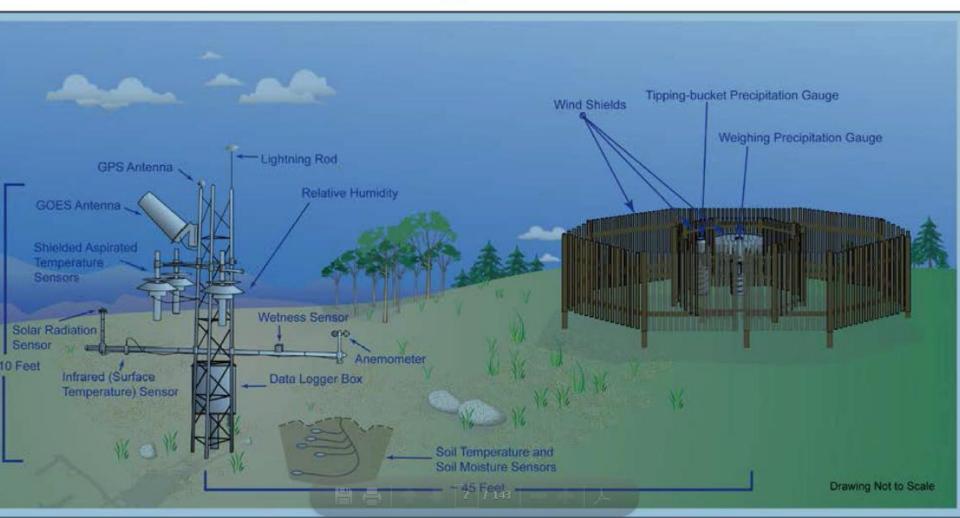
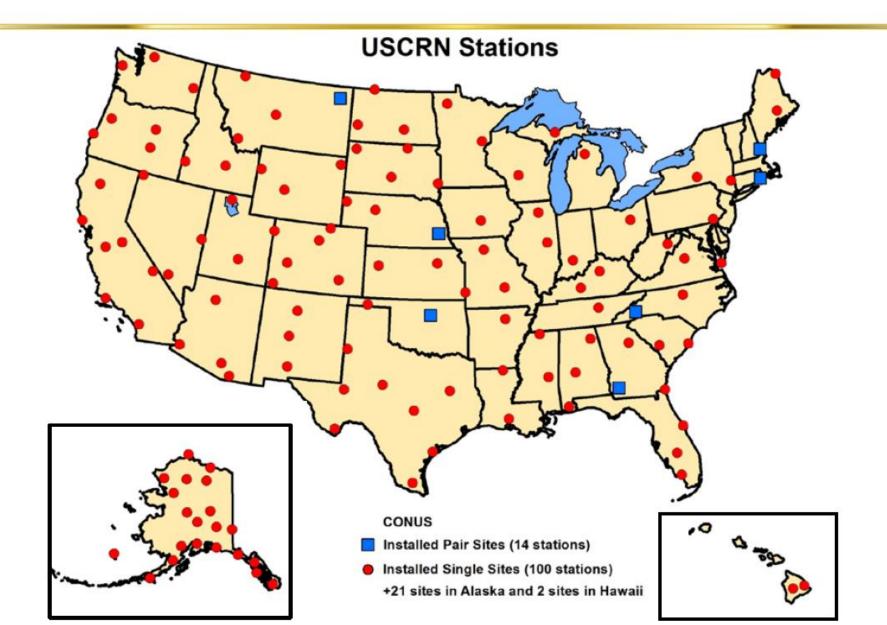


Figure 3—The double Alter windshield performs well in high winds.


- Next several slides delve into the USCRN, US Climate Reference Network
- USCRN is the "unimpeachable" climate reference network...
- but...what about the operational world...airports?

US Climate Reference Network

Instruments at a Typical USCRN Station

US Climate Reference Network

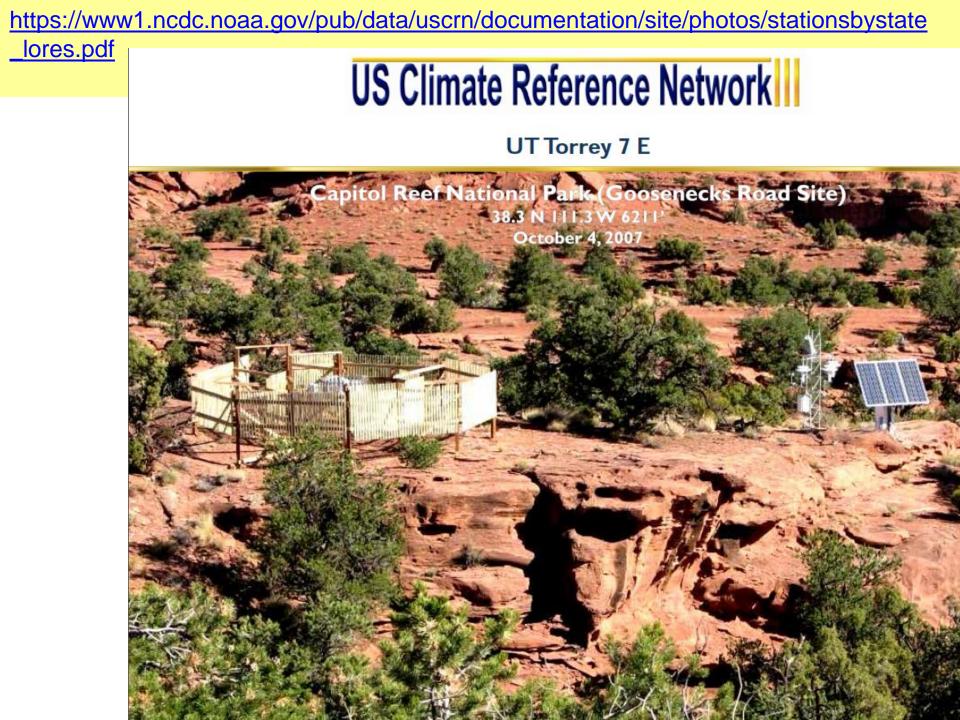
https://www1.ncdc.noaa.gov/pub/data/uscrn/documentation/site/photos/stationsbystate lores.pdf

US Climate Reference Network

NM Las Cruces 20 N

Jornada USDA ARS Experimental Range (Jornada Hq Site) 32.6 N 106.7 W 4324' March 1, 2007 https://www1.ncdc.noaa.gov/pub/data/uscrn/documentation/site/photos/stationsbystate lores.pdf

US Climate Reference Network


NM Socorro 20 N

Sevilleta National Wildlife Refuge (LTER Site) 34.4 N 106.9 W 4842' May 25, 2003 https://www1.ncdc.noaa.gov/pub/data/uscrn/documentation/site/photos/stationsbystate lores.pdf

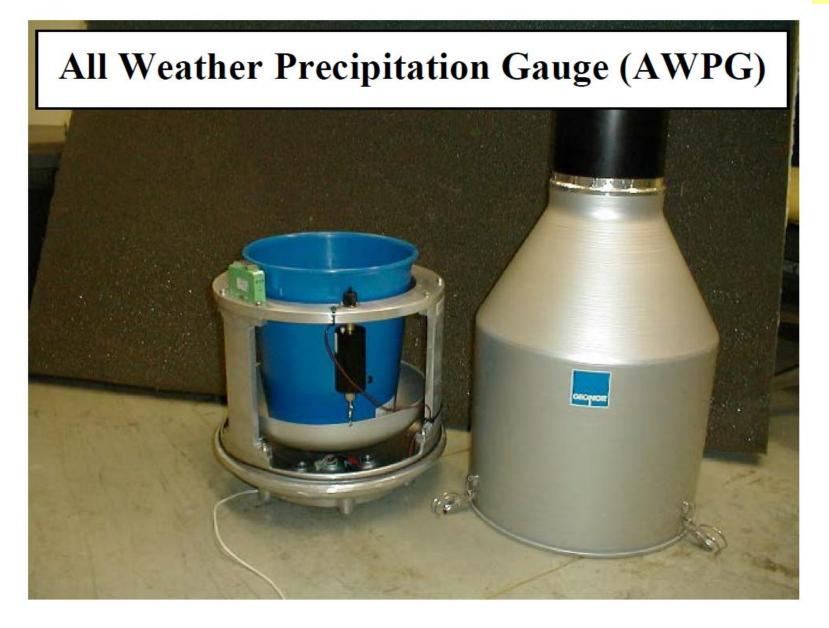
US Climate Reference Network

NM Los Alamos 13 W

NPS, Valles Caldera National Preserve 35.9 N 106.5 W 8705' July 31, 2004

Air Temperature

USCRN stations are equipped with three independent thermometers which measure air temperature in degrees Celsius.


The station's datalogger computes independent 5-minute averages using two-second readings from each thermometer. These multiple measurements are then used to derive the station's official hourly temperature value.

Precipitation

Each station has a weighing precipitation gauge which is equipped with three load cell sensors to provide three independent measurements of depth change (in millimeters) at 5-minute intervals.

The three series of 5-minute values are then used in an algorithm to derive the station's official 5-minute and hourly precipitation value.

https://www1.ncdc.noaa.gov/pub/data/uscrn/documentation/site/sensors/precipitation/Des criptions/Precip_GeonorT-200B.pdf

Description:

The Geonor precipitation gauge is a weighing type gauge.

The T-200B uses vibrating wire strain gauge load cells to continuously weigh the collection bucket.

The collection bucket is suspended by three vibrating wire sensors.

Most gauges in the USCRN have a capacity of 600 mm precipitation, but in some remote or very wet locations, a 1000 mm capacity gauge is used to extend the time before the gauge reaches capacity and needs to be drained.

How is it installed?

The gauge is mounted to a poured concrete pedestal such that the gauge opening is about 1.5 m above the ground.

A controlled heater is attached to the outer surface of the inlet throat of the gauge so that wet snow between -10°C and +5°C doesn't clog the opening, but slides in instead. The gauge is surrounded by a

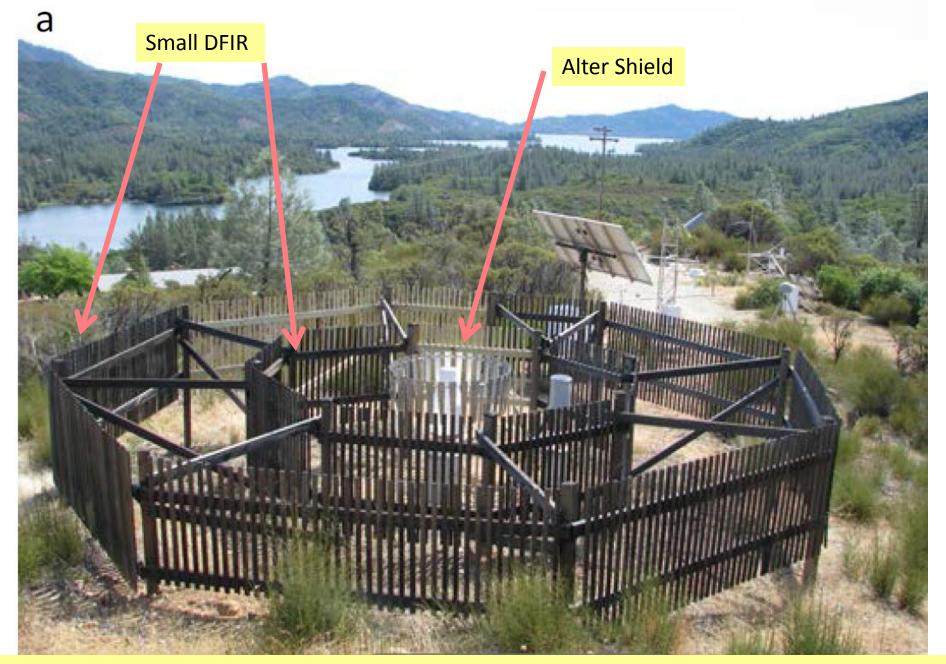
Small Double Fence Intercomparison Reference (SDFIR)

Shield and a Single Alter wind/snow shield.

In cold weather, an antifreeze mix is added.

http://geonor.com/live/products/precipitation-and-snow-depth/t-200b-weatherprecipitation-rain-gauge/

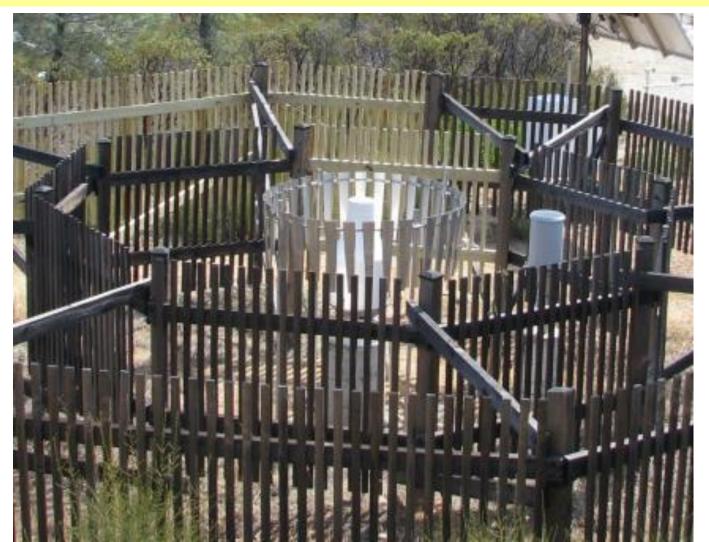
Geonor T-200B series All-weather precipitation gauges 600 mm • 1000 mm • 1500 mm



- · More than 25 years of field use
- · Easy installation and maintenance
- Precipitation intensity can be calculated
- · Proven long term reliability

- · No internal heating required
- No moving parts
- · Interfaces to most data acquisition systems
- · Vibrating wire weighing sensors

http://geonor.com/live/products/precipitation-and-snow-depth/t-200b-weatherprecipitation-rain-gauge/



USCRN Geonor-T200B gauge within both a Small double fence Intercomparison Reference <Small DFIR> shield and Alter shield, near Merced, CA... https://www.ncdc.noaa.gov/news/uscrn-implements-new-approach-precipitation Redding, CA.

Small DFIR, Alter shield, Geonor T-200B weighing gage and tipping bucket gage (gray)

This photo's exposure / composition shows the shields better than other photos.

Accuracy of NWS 8" Standard Nonrecording Precipitation Gauge: Results and Application of WMO Intercomparison

DAQING YANG,* BARRY E. GOODISON, AND JOHN R. METCALFE

Atmospheric Environment Service, Downsview, Ontario, Canada

VALENTIN S. GOLUBEV

State Hydrological Institute, St. Petersburg, Russia

ROY BATES AND TIMOTHY PANGBURN

U.S. Army CRREL, Hanover, New Hampshire

CLAYTON L. HANSON

U.S. Department of Agriculture, Agricultural Research Service, Northwest Watershed Research Center, Boise, Idaho (Manuscript received 21 December 1995, in final form 1 August 1996)

Dual-gauge measuring system (bridled shield and unshielded universal recording gauges) Idaho.

The title of this report is, <u>Accuracy of NWS 8" Standard Nonrecording Precipitation</u> <u>Gauge: Results and Application of WMO Intercomparison.</u>

Data is displayed in tables showing measurements from shielded and unshielded standard 8-inch rain gages, *but the report does not show photos of them side by side.*

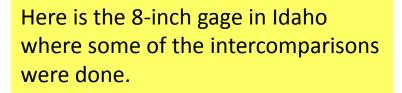


Figure 5 NWS 8-inch Manual Gauge

Figure from SAIC report, "Interim Report For The Winter Test of Production All-Weather Precipitation Accumulation Gauge (AWPAG) Winter 2008-2009"

Results

"Ground Truth" was established using collection inside a DFIR

Wind speed -- most important in reducing efficiency of catch

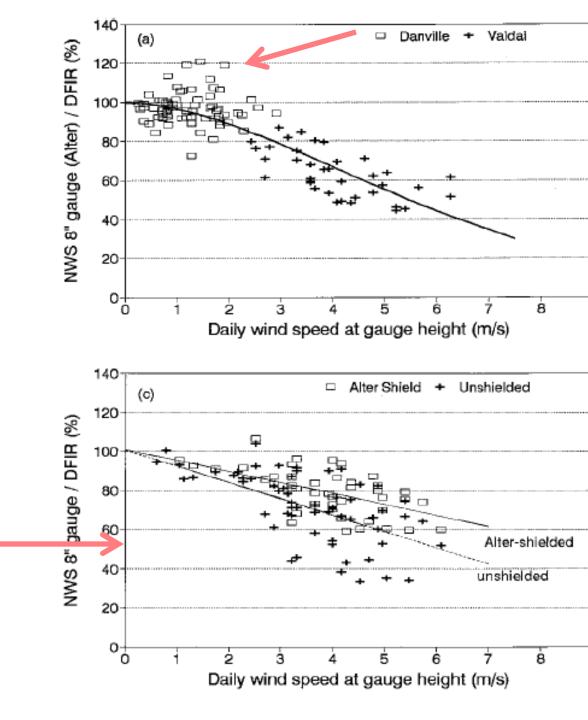
Correction equations were derived to improve the unshielded 8-inch gage <manual collection>

<The correction equation used on-line with ASOS is called a "Transfer Function">

Depending on the winds, they had to add 20% for rain, and 90% for snow.

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

TABLE 1. Summary (total and percentage of the DFIR) of daily observed precipitation for the NWS 8" standard gauge (with an Alt	ter
shield or unshielded) at Valdai, Reynolds Creek, and Danville WMO Intercomparison stations.	


Number of						NWS 8" measured	
Type of precipitati		$T_{\rm max}$ (°C)	T_{\min} (°C)	Ws(@ 3 m) m s ⁻¹	DFIR	Alter	Unshielded
a) Valdai	WMO site, Octob	er 1991 to Marcl	h 1993				
Snow	154	-4.1	_	3.8	357.4 mm 100.0%	248.8 mm 69.6%	156.5 mm 43.8%
Mixed	73	0.7	—	4.5	463.9 mm 100.0%	361.4 mm 77.9%	303.4 mm 65.4%
Rain	108	10.0	—	3.6	434.5 mm 100.0%	400.8 mm 92.2%	386.0 mm 88.8%
A11	335	2.2	—	4.0	1255.8 mm 100.0%	1011.0 mm 80.5%	845.9 mm 67.4%

At the Valdai site in Russia, not far from Finland, the unshielded 8-inch gage had about 11% undercatch for rain, but ~57% of the snow was not caught.

VOLUME 15

Nowhere in the text does it explain how the 8-inch gage records 20% HIGHER than the DFIR...At Low Wind Speeds!

As wind speed increases, >2m/sec, precipitation falls off significantly.

All data below this line show the 8-inch rain gage captures less than half that captured by the DFIR!

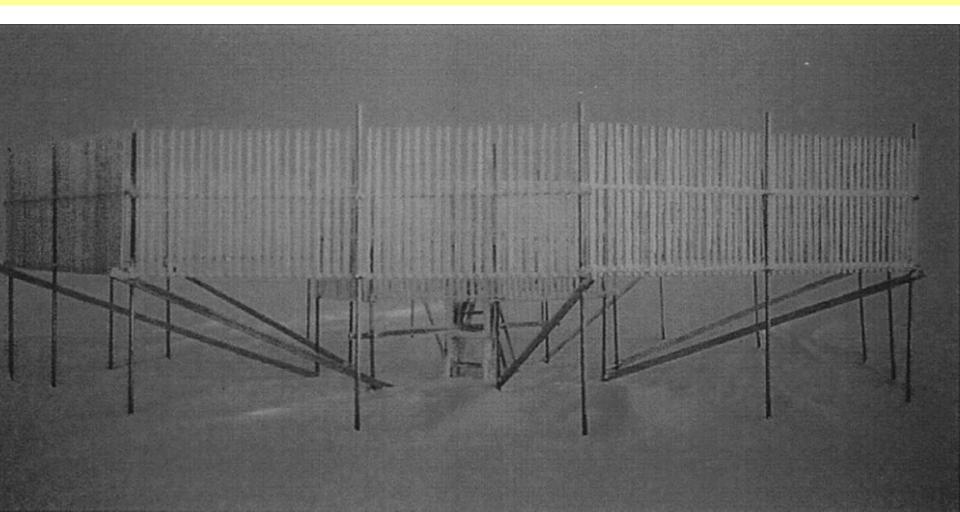
YANG ET AL.

TABLE 2. Summary (total and percentage of the DFIR) of daily corrected precipitation for the NWS 8" standard gauge (with an Alter shield or unshielded) at Valdai, Reynolds Creek, and Danville WMO Intercomparison project stations.

	Event	ts (Days)		NWS 8"	measured	easured NWS 8" corr		rected	
Type of precipitation	All	DFIR > 3.0 mm	DFIR	Alter	Unshielded	Alter	Unshielded		
(a) Valdai WMO	O site, Octo	ber 1991 to Ma	rch 1993						
Snow	154	37	357.4 mm 100.0%	248.8 mm 69.6%	156.5 mm 43.8%	334.7 mm 93.6%	374.0 mm 104.6%		
Mixed	73	45	463.9 mm 100.0%	361.4 mm 77.9%	303.4 mm 65.4%	457.8 mm 98.7%	448.5 mm 96.7%		
Rain	108	47	434.5 mm 100.0%	400.8 mm 92.2%	386.0 mm 88.8%	435.1 mm 100.1%	431.6 mm 99.3%		
A11	335	129	1255.8 mm 100.0%	1011.0 mm 80.5%	845.9 mm 67.4%	1227.6 mm 97.8%	1254.1 mm 99.9%		

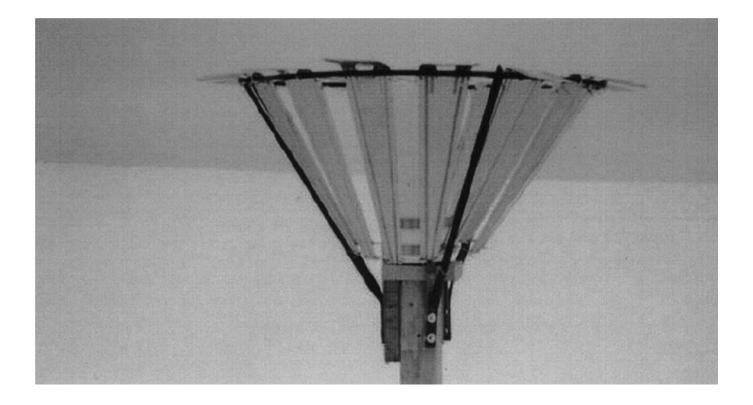
This shows the data after it has been corrected by the equations derived during the experiments at Valdai, Russia, Reynolds Creek, Idaho, and Danville, Vermont.

Precipitation Measuring Instruments


Wind shields

Combinations

DFIR, Dual Fence Intercomparison Reference wind shield equipped with Tetryakov precip gage Outer: 12m Diameter, top 3.5m AGL, lath 1.5m long, 50% coverage Inner: 4m Diameter, top 3.0m AGL, lath 1.5 m long, 50% coverage Shown with Tretyakov precipitation gage among items for sale Almaty, Kazakhstan DFIR, Dual Fence Intercomparison Reference wind shield, equipped with Tretyakov precip gage

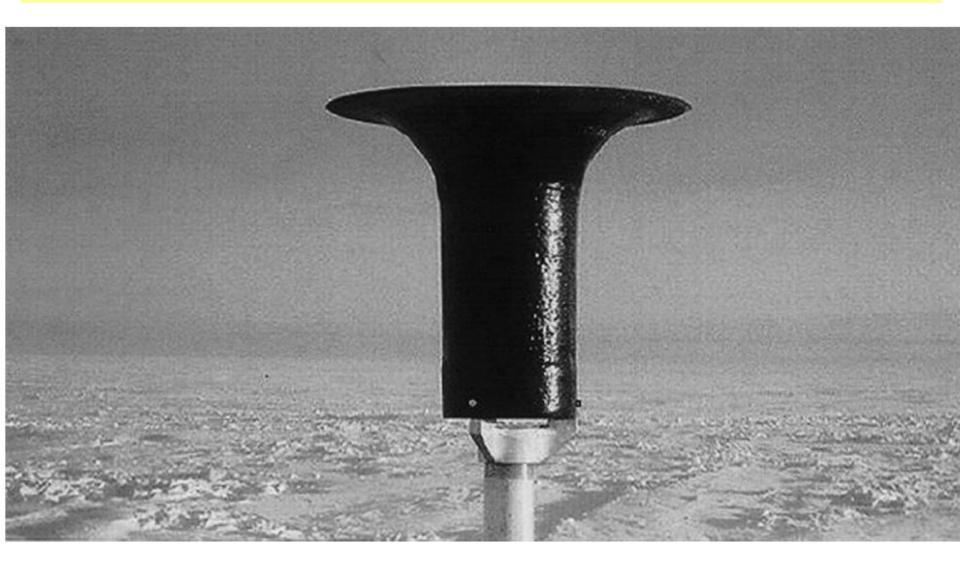

Outer: 12m Diameter, top 3.5m AGL, lath 1.5m long, 50% coverage Inner: 4m Diameter, top 3.0m AGL, lath 1.5 m long, 50% coverage

On site at NOAA Climate Modeling and Diagnostics Laboratory Point Barrow, Alaska, 550 km north of Arctic Circe (71 Deg 19 min North, 156 Deg 36 min West.)

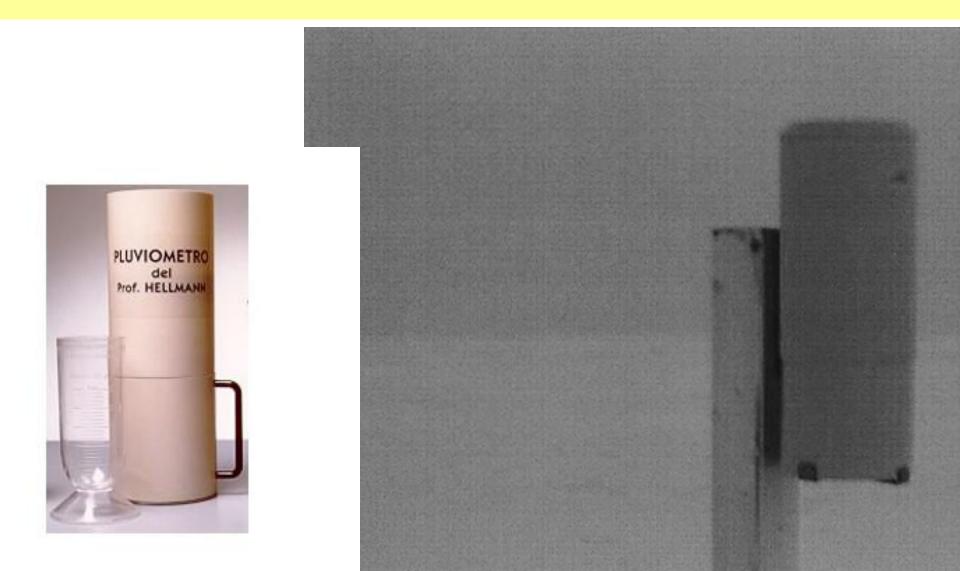
Tretyakov precipitation gage.

The one in the center of the DFIR field is 3m AGL, making it the same height as the height of the inner lath shields

Right: Tretyakov Precipitation Gage at University of Colorado, Boulder



Left: Tretyakov Precipitation Gage for sale Almaty, Kazakhstan


Canadian Nipher Gage.

Top bell is 610 mm wide, bottom is 229 mm diameter, horn is 508 mm long. Inner diameter of collection cup is 127 mm and the height of the measuring cup is 2 m AGL.

Hellmann Gage, bucket height is 2m AGL.

Hellmann Gages are used... in Argentina, Austria, Chile, Croatia, Denmark, Germany, Greenland, Hungary, Poland, Portugal, Romania, Spain, Switzerland, and Turkey

https://www.ars.usda.gov/research/publications/publication/?seqNo115=96710

QUANTIFICATION OF PRECIPITATION MEASUREMENT DISCONTINUITY INDUCED BY WIND SHIELDS ON NATIONAL GAUGES

Technical Abstract: <extracts>

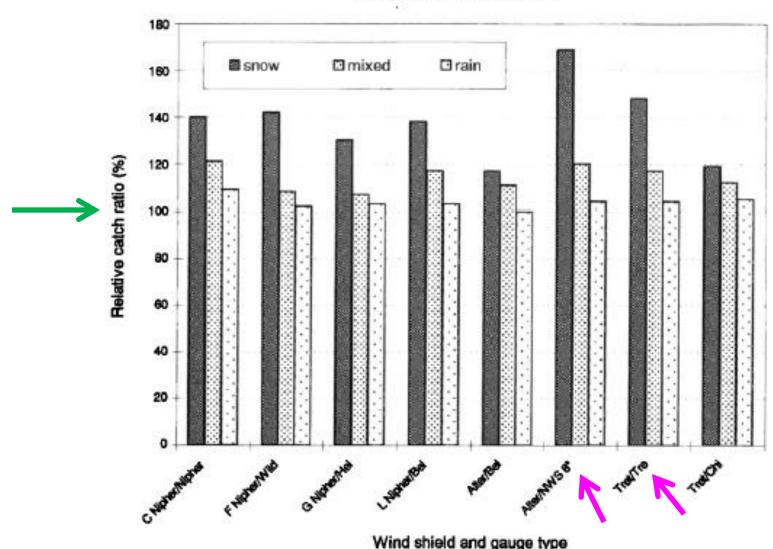
Various combinations of wind shields and national precipitation gauges commonly used in countries of the Northern Hemisphere have been studied using the combined intercomparison data collected at 14 sites during the WMO Solid Precipitation Measurement Intercomparison Project.

The results show that

wind shields improve gauge catch of precipitation particularly for snow.

Shielded gauges, on average, measure 20-70% more snow than unshielded gauges.

Without a doubt, the <u>use of wind shields on precipitation gauges has introduced a</u> significant discontinuity into precipitation records particularly in cold and windy regions. https://www.ars.usda.gov/research/publications/publication/?seqNo115=96710


QUANTIFICATION OF PRECIPITATION MEASUREMENT DISCONTINUITY INDUCED BY WIND SHIELDS ON NATIONAL GAUGES

This discontinuity is not constant and it varies with wind speed, temperature and precipitation type.

Adjustment for this discontinuity is necessary to obtain homogenous precipitation data for climate change and hydrological studies

The relation of the relative catch ratio (RCR, ratio of measurements of shielded gauge to unshielded gauge) versus wind speed and temperature has been developed for Alter and Tretyakov wind shields.

Strong linear relations between measurements of shielded gauge and unshielded gauge have also been found for different precipitation types.

Comparison of wind shields

Figure 9. Mean relative catch ratios (RCR) for various shield and gauge combinations. Abbreviations a as follows: C Nipher/Nipher, Canadian Nipher shield with Nipher snow gauge; F Nipher/Wild, Finnish Niph shield with Wild gauge; G Nipher ?Hel, Herman Nipher shield with Hellmann gauge; L Nipher/Bel, lan Nipher shield with Belfort gauge; Tre/Tre, Tretyakov shield with Tretyakov gauge; Alter/NWS 8", Alter shield with NWS 8-inch nonrecording gauge; Tre/Chi, Tretyakov shield with Chinese standard gauge.

http://journals.ametsoc.org/doi/abs/10.1175/15200477%281994%29075%3C0215%3AT AOUSP%3E2.0.CO%3B2

The Accuracy of United States Precipitation Data

Pavel Ya. Groisman*.+ and David R. Legates®

Bulletin of the AMS, Feb, 1994.

Abstract says that errors go from 5% to 40%, worse in winter and in northern states because of strong winter storms (wind and snow effects)

In the West, stations are in the valleys, but much of the terrain is a lot higher, and much of that is in the mountains, and unsampled.

... the HCN and, to a lesser extent, the CDDB are likely the best available sources of historical precipitation data. The question we address here, however, is: Is the absolute accuracy of these data adequate to meet the diverse needs of scientists who use historical precipitation data? We believe that for many applications, the answer is no.

HCN = United States <u>Historical Climatology Network</u>

CDDB = Climate Division Data Base (Part of National Climate Data Center)

Here is the 8-inch gage in Idaho where some of the intercomparisons were done.

Figure 5 NWS 8-inch Manual Gauge

Figure from SAIC report, "Interim Report For The Winter Test of Production All-Weather Precipitation Accumulation Gauge (AWPAG) Winter 2008-2009"

Groisman and Legates find the precipitation records in the US have a discontinuity caused by the 1940s introduction of the Alter shields to some, but not all, of the US standard 8-inch rain gages.

More discussion on the problems with rain gage data by Groisman and Legates, 1994:

Vegetation growth and removal

Construction, removal of fences, buildings

Installation of instruments on building roof

then removing them from the roof...

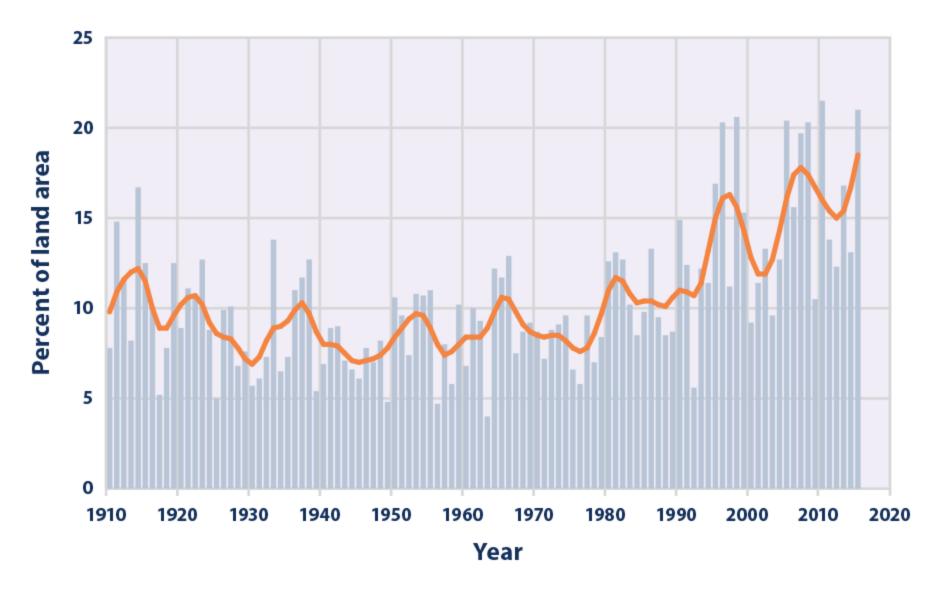
and moving them to the airport...

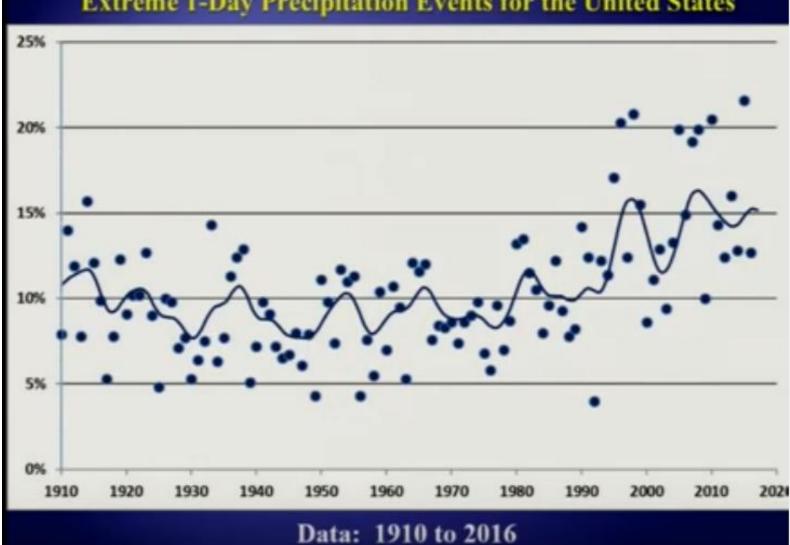
A significant improvement to precipitation measurements in the US would be to add precipitation shields to the gages. **Groisman and Legates, Summary and Conclusions (1994)**

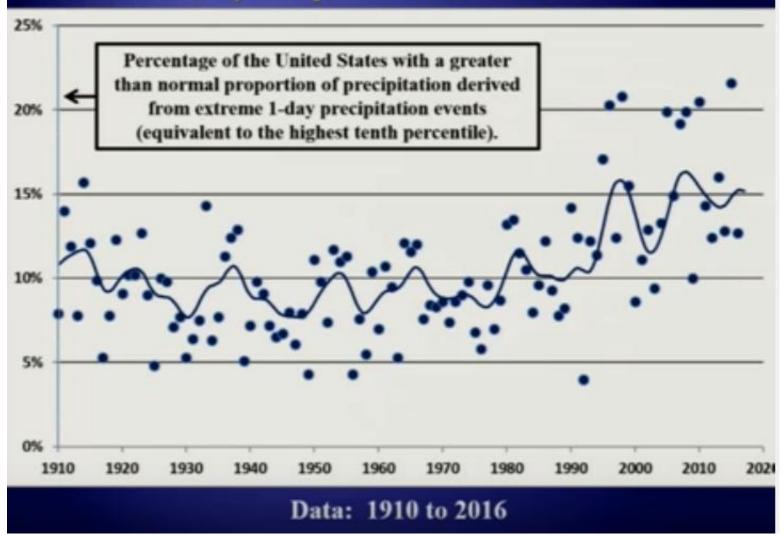
We are undercounting precipitation especially where it is windy and snowy

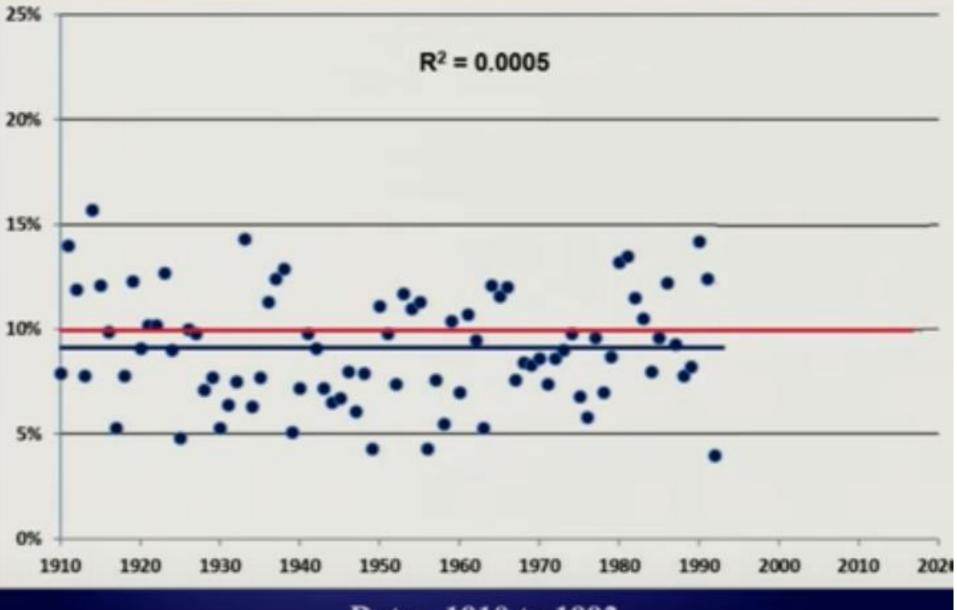
These problems are compounded in the mountain West

Introduction of shields in the 1940s to some, not all, of the gages presents a discontinuity

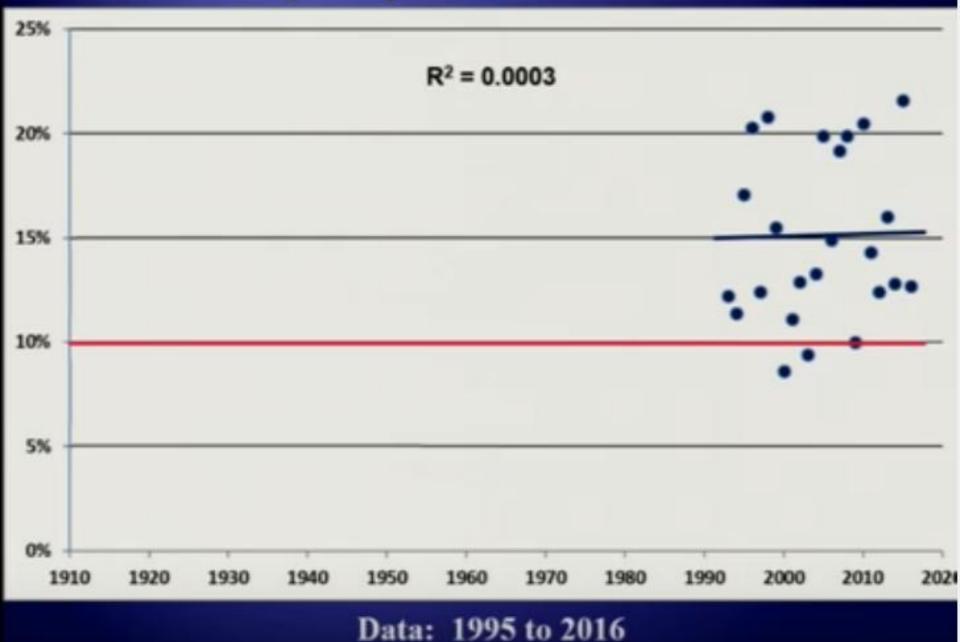

Studies of "climate change" not taking the above are likely to be misleading.

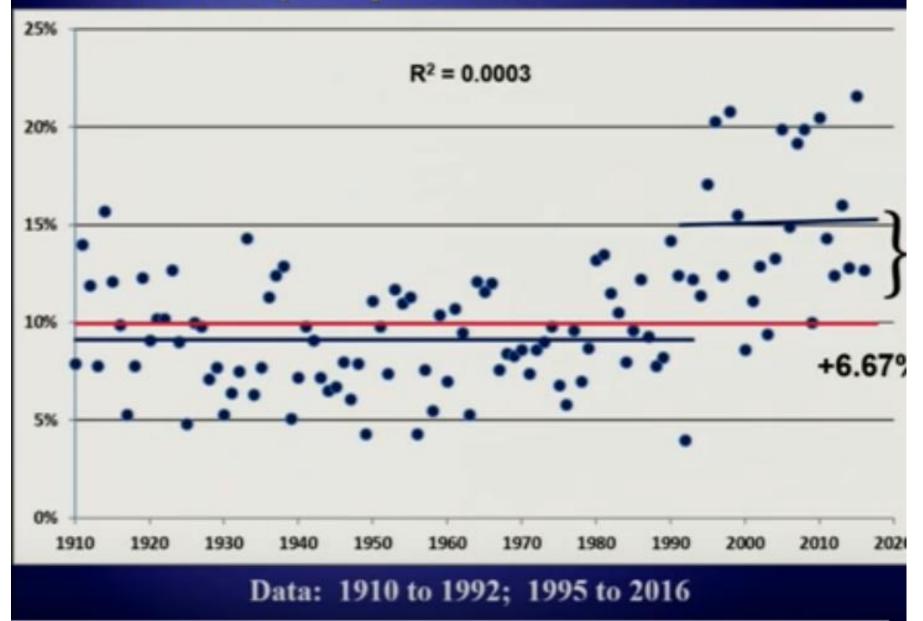

https://www.youtube.com/watch?v=yB6cbwVTWs4 1:42:00 to 1:57:00


Where the Science Debate Currently Stands


David R. Legates, Ph.D., C.C.M. University of Delaware Newark, Delaware

https://www.epa.gov/climate-indicators/climate-change-indicators-heavy-precipitation





Data: 1910 to 1992

Jump discontinuity, "square wave," in the record!

Through 1992: Manual NWS 8" Raingage

Through 1992: Manual NWS 8" Raingage

An early Automated Surface Observation System (ASOS) Precipitation Sensor

Heated mouth allows collection of snow melt.

Wind Shield reduces precipitation losses.

Right: Detail of Tipping Bucket mechanism used NWS Modernization Program for Surface Weather Observations: Since 1995 the ASOS Modernization program has replaced most 8-inch rain gages. Shielded Rain Gages, closer to the ground, using automated, tipping-bucket gages. Wind increases with height so lower collection mouth is better in principle. Better Measurement, fewer precipitation wind/turbulence losses at rain gage height.

More information

NWS Surface Modernization Program

ASOS, Automated Surface Observation System

ASOS improvement program

"Final" -- ASOS precipitation measurement configuration

According to NOAA, completed in 2011

https://ams.confex.com/ams/Annual2005/techprogram/paper_82895.htm

Figure 2 Frise tipping bucket gauge

Early ASOS having the Frize heated tipping bucket rain gage

Source: <u>Weather in Your Backyard</u>, Ray Martin, Lead Forecaster NWS, powerpoint presentation on NWS Modernization Effort

https://ams.confex.com/ams/Annual2005/techprogram/paper_82895.htm

Ott weighing gage with integral Tretyakov shield All-Weather Precipitation Accumulation Gauge, AWPAG

Figure 1 Ott AWPAG

https://ams.confex.com/ams/Annual2005/techprogram/paper_82895.htm AWPAG, Integral Tretyakov shield, and 8-foot Alter style shield

ASOS, Automated Surface Observation System. Left, the All Weather Precipitation Accumulation Gage, AWPAG. 10-meter wind mast has the red and white color scheme.

Source: <u>Weather in Your Backyard</u>, Ray Martin, Lead Forecaster NWS, powerpoint presentation on NWS Modernization Effort

ASOS AWPAG in Wikipedia:

All-Weather Precipitation Accumulation Gage inside

8-foot Alter shield

https://www.meted.ucar.edu/hydro/precip_est/part1_measurement/navmenu.php?tab=1 &page=3-7-0&type=text

> All Weather Precipitation Accumulation Gauge (AWPAG) with Double-Structure Wind Shield

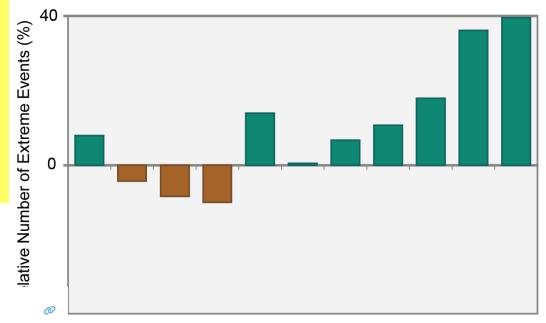
Snow Measurements

NOAA/NWS Current Standard

Observing Practices

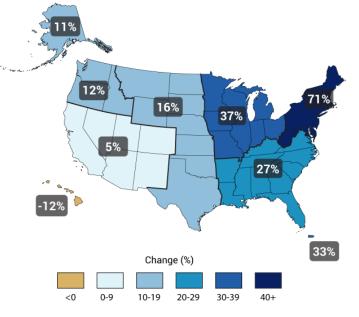
ASOS, Snow Paid and Snow Spotters

Thomas Townsend Regional Observations Program Manager NWS Central Region May 25, 2011


CD ASOS locations

replaced Heated Tipping Bucket (HTB) with All Weather Precipitation Accumulation Gaug (AWPAG) Added a 8 ft double Alter shield during the last year

ASOS


We now know that these precipitation increases are real, but they are artifacts of improved collection of precipitation with dual-shielded ASOS gages, not changing weather or climate. Observed U.S. Trend in Heavy Precipitation

1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s Decade

Figure 2.18: Observed Change in Very Heavy Precipitation

