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Assessing reliability of global model s is critical because of increasing
reliance on these models to address p ast and projected future climate
and human stresses on global water resources. Here, we evaluate
model reliability based on a compr ehensive comparison of decadal
trends (2002 –2014) in land water storage from seven global models
(WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM)
to trends from three Gravity Recovery and Climate Experiment
(GRACE) satellite solutions in 186 river basins ( ∼60% of global land
area). Medians of modeled basin water storage trends greatly un-
derestimate GRACE-derived large decreasing ( ≤−0.5 km3/y) and in-
creasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are
mostly related to human use (irrigation) and climate variations,
whereas increasing trends reflect c limate variations. For example, in
the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y,
whereas most models estimate decreasing trends ( −71 to 11 km 3/y).
Land water storage trends, summed o ver all basins, are positive for
GRACE (∼71–82 km3/y) but negative for models ( −450 to −12 km3/y),
contributing opposing trends to global mean sea level change. Im-
pacts of climate forcing on decadal land water storage trends exceed
those of modeled human intervention by about a factor of 2. The
model-GRACE comparison highlights potential areas of future model
development, particularly simulated water storage. The inability of
models to capture large decadal water storage trends based on
GRACE indicates that model projections of climate and human-
induced water storage change s may be underestimated.

global hydrological models | land surface models | GRACE satellites |
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There has been an unprecedented increase in evaluation of
global hydrology using models, as seen in the exponential

increase in publications on these topics. For example, an In-
stitute for Scientific Information Web of Science search of the
topic “global hydrological models” (GHMs) yielded almost
4,000 papers since the year 2000 with � 100,000 citations. How-
ever, many studies of global hydrology are based on single
models. Although there are more and more multimodel studies,
such studies are rarely used to explain historical trends. The
greatly increased emphasis on global hydrology raises questions
about the reliability of these models.

Understanding the origin of the global models is important because
current applications of models may differ from the original model
development goals. The term global hydrological models has been
used to include both global land surface models (LSMs) and global
hydrological and water resource models (GHWRMs) (1, 2). LSMs are
defined as models that are integrated into general circulation models
(3) and were originally developed by the atmospheric community to

simulate fluxes from the land to the atmosphere because of linkages
between the land surface and climate (1). Because of their emphasis
on fluxes, LSMs may not accurately simulate water storage changes
(4). GHWRMs were developed in response to global water scarcity
concerns (1). Therefore, one of the primary differences between
LSMs and GHWRMs is the more physical basis for LSMs, including
water and energy balances, relative to the empirical water budget
approaches of GHWRMs. In addition, GHWRMs model human
water use, whereas most LSMs do not.

Remote sensing products are also used to assess global hydrol-
ogy, such as Gravity Recovery and Climate Experiment (GRACE)
satellite data (5). GRACE satellites have been likened to giant
weighing scales in the sky that monitor monthly changes in mass as
water storage increases or decreases related to climate variability
and human impacts. GRACE satellites provide data on continental
total water storage anomalies (TWSAs) globally since the satellites
were launched in 2002. These satellites provide a more direct es-
timate than models of global changes in TWSAs that are derived
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We increasingly rely on global models to project impacts of hu-
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agreement between models and GRACE underscores the chal-
lenges remaining for global models to capture human or climate
impacts on global water storage trends.
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Table S1). These measurement and leakage uncertainties do not
contribute to trend uncertainties, consistent with findings from
previous studies (31). TWSA trend uncertainties are more im-
portant for this study (SI Appendix, section 4.2). Only basins with
statistically significant TWSA trends were included in net TWSA
trends in this study. TWSA trends were found to be significant
(P = 0.05) in at least one of the GRACE solutions for all basins
with large decreasing and increasing TWSA trends (94 basins),
except the Congo Basin (Mann–Kendall Test; SI Appendix, sec-
tion 4.2b). Approximately 85% of the basins have significant
trends in all three GRACE solutions. To test the impacts of
glacier leakage, basins containing any ice were excluded from
JPL-M processing (SI Appendix, Fig. S1) and TWSA trends were
recalculated. Results show that leakage from the Alaskan glaciers
reduced the TWSA trend in the nearby Yukon Basin from

1.1 to Š10.8 km3/y. However, leakage from the Asian High
Mountain Glaciers reduced the trend in the Ganges by only 20%.
TWSA trends in the Salado basins in South America are affected
by both glacier leakage and the 2010 Maule earthquake in Chile
(magnitude of 8.8). These basins (Congo, Yukon, and Salado
basins) were excluded from net TWSA trends in this study.

The remaining GRACE TWSA trend uncertainties include the
following: (i) solution trend uncertainty based on variations in TWSA
trends among the three GRACE solutions (SI Appendix, Table S5),
(ii) trend (slope) uncertainty for each GRACE solution based on
linear regression, and (iii ) uncertainty related to glacial isostatic ad-
justment (GIA) from rebound from Pleistocene glaciation in north-
ern latitude basins in North America and Fennoscandia (Table 2 and
SI Appendix, sections 4.2 and 4.3 and Table S5). Example basins with
large GIA uncertainties include the MacKenzie and Nelson basins in
North America. GRACE trend uncertainties are dominated by
variability among GRACE solutions (SI Appendix, Table S5).

What Is the Impact of Human Intervention on Global Water Storage
Trends? Human intervention (water abstractions and reservoir
management) on TWSA trends can be evaluated qualitatively by
comparing TWSA trends with irrigation intensities, indicated only
by irrigated areas rather than irrigation water extractions. Many
basins with large TWSA declines are heavily irrigated [e.g., Ganges
(irrigation of 31% of land area)] (Figs. 4 and 6 and Table 2). Large
TWSA declines in some of these basins are attributed mostly to
human-induced GW abstractions, as described in regional studies
(34, 42, 43). Depletion linked to irrigation is also consistent with
low irrigation intensities (irrigated areas < 5%) in basins showing
large increasing TWSA trends, except for a few basins that are
irrigated with SW and GW (e.g., Godavari basin in India) and the
filling of the Three Gorges reservoir in the Yangtze Basin (44)
(Fig. 4C). This qualitative comparison is insufficient to determine
human intervention, as some of the basins in the zone with low
TWSA trends (trends within ±0.5 km3/y) also have large irrigated
areas with varying levels of SW or GW irrigation (Fig. 4C).

To further isolate effects of human intervention on TWSA
trends, WGHM and PCR-GLOBWB models were run without
human intervention (WGHM-NHI and PCR-GLOB-NHI) (27)
(Fig. 6, Table 2, and SI Appendix, Fig. S12). Both models vary
water demand over time (2002–2014) for the irrigation sector
based on changes in irrigated area from Food and Agriculture
Organization data and for nonirrigation sectors based on

Fig. 4. (A–D) TWSA trends ranked according to trends from GRACE CSR-M
from decreasing trends (buff background, �Š 0.5 km3/y) and increasing
trends (blue, � 0.5 km3/y). The black line in B represents GRACE CSR-M TWSA
trends, and the gray-shaded area represents uncertainty (Uncert.) in TWSA
trends (SI Appendix, section 4.2). Irrig, irrigation.

Table 3. Median TWSA trends in GRACE and models in basins with large rising CSR-M trends ( ≥0.5 km3/y) and large declining CSR-M
trends ( ≤−0.5 km3/y)

More details are provided in SI Appendix, Tables S10 and S11. Dec, decreasing; Inc, increasing; int., intervention.
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from Š0.23 to Š0.20 mm/y (April 2002–December 2014) (Fig. 7,
Table 3, and SI Appendix, Figs. S13 and S14). In contrast to
GRACE output, decreases in land water storage from models
(net negative TWSA trends) would contribute positively to
GMSL, increasing the rate of GMSL rise. The contributions
range from 0.03 mm/y from WGHM to 0.14 mm/y from PCR-
GLOBWB, with a much larger range from LSMs (0.04–1.2 mm/y)
(Fig. 7 and Table 3). Such large differences between models and
GRACE and among models indicate that we may not be able to
reliably estimate contributions from land water storage to GMSL
change using models.

We can also estimate the human and climate contributions to land
water storage and GMSL change (SI Appendix, Fig. S14). Human
intervention results in depletion of land water storage ranging from
0.15 mm/y (WGHM) to 0.24 mm/y (PCR-GLOBWB) in this study
(Table 3 and SI Appendix, Fig. S14 and Table S12). Subtracting the
modeled human intervention contribution from the total land water
storage contribution from GRACE results in an estimated climate-
driven contribution of Š0.44 to Š0.38 mm/y. Therefore, the magni-
tude of the estimated climate contribution to GMSL is twice that of
the human contribution and opposite in sign. While many previous
studies emphasize the large contribution of human intervention to
GMSL, it has been more than counteracted by climate-driven stor-
age increase on land over the past decade.

The GRACE mascon-derived estimates of land water storage
from this study (Š0.20 to Š0.23 mm/y) are similar to those from
previous studies covering the same time period (Š0.29 and
Š0.33 mm/y) (8, 31) (SI Appendix, Fig. S14 and Table S12). The
modeled human intervention in this study is within the range of
those from recent studies (0.12 mm/y) (18) and the IPCC
(0.38 mm/y) (7), both for longer periods (1993–2010). Calculated
climate contributions to GMSL (GRACE minus human contribu-
tion) range from Š0.38 to Š0.44 from this study relative to Š0.41 to
Š0.71 from previous studies. Therefore, net increases in glacier-
free land water storage in this study should have slowed the rate of
sea level rise since 2002, with climate variations contributing about
twofold more to GMSL than human intervention. The other
components of the sea level budget from previous studies are
described in SI Appendix, Table S12.

What Causes the Differences in Water Storage Trends Between
Models and GRACE? Discrepancies in TWSA trends may be re-
lated to uncertainties in GRACE (SI Appendix, section 4) and in
models. Basins with insignificant GRACE-derived TWSA trends
and large uncertainties related to glacier leakage and earth-
quakes were excluded from net TWSA trends.

Factors related to modeling that can contribute to discrep-
ancies between models and GRACE include initial conditions,
climate forcing, land cover input, model structure, human in-
tervention, and calibration. Here, we focus on a few of the main
factors, including:

i) Initial conditions and model spin-up
ii ) Water storage compartments and capacity related to model

structure
iii ) Precipitation uncertainty
iv) Model calibration

Initial conditions and model spin-up. Long-term trends can be im-
pacted by model initial conditions if the model spin-up (number
of years the model is run) is insufficient for the model to
equilibrate with the climate forcing. We evaluated global trends
in TWSA and component storages using gridded global model
output (excluding Greenland, Antarctica, and mountain glaciers)
to examine if model trends during the GRACE period (2002–
2014) may be an artifact of initial conditions. WGHM and CLM-
4.0 models were selected because both include GWS. The
WGHM model shows that SnWS is fairly stable, except for a
period in the mid-1940s to mid-1960s when storage increases (SI
Appendix, Fig. S15). CWS is temporally invariant. SWS increases
gradually to the mid-1950s, followed by a period with no sys-
tematic storage variation. SMS and GWS are initialized dry in
WGHM. SMS is fairly stable over the entire period (1901–2014).
GWS increases, particularly in the 1970s. Trends in the storage
components contribute to the trends in TWSA. The component
storages suggest that the 2002–2014 trends considered in this
study should be minimally impacted by the initial conditions
because of the long spin-up. Output from CLM-4.0 shows that
SnWS and SWS are fairly stable over time (SI Appendix, Fig.
S16). SMS and GWS are initialized wet. SMS shows a large
decline in the first � 30 y, and GWS markedly declines, particu-
larly in the first 40 y and more gradually after that period. Al-
though the trends are large during the early period, output from
the recent decade should not be substantially affected by the
initial conditions because of the long spin-up period.
Water storage. One of the obvious factors is that most LSMs do
not model SWS and GWS compartments, with the exception of
CLM-4.0 (Table 1). Inclusion of these compartments in CLM-
4.0 may explain the much better agreement between CLM-
4.0 and GRACE net decreasing (Š72 km3/y) and increasing

Fig. 6. Relationship between TWSA trends from models with human in-
tervention WGHM (A) and PCR-GLOBWB (B) relative to models with no human
intervention (NHI). Selected outlying basins are labeled. Trends for some PCR-
GLOBWB basins plot outside the diagram [e.g., Indus (Š38.4 km3/y)].

Fig. 7. GMSL change derived from TWSA trends for GRACE CSR-M, GHWRMs
(PCR-GLOBWB and WGHM; dashed lines), and LSMs (MOSAIC, VIC, NOAH-3.3,
CLSM-F2.5, and CLM-4.0). The black dashed line represents the downward
contribution of GRACE CSR-M trends to GMSL, and the orange dashed line
represents the upward contribution from LSM-MOSAIC. GRACE-positive TWSA
trends (71 km3/y) contribute negatively (Š0.2 mm/y) to GMSL, slowing the rate
of rise of GMSL, whereas models contribute positively to GMSL, increasing the
rate of rise of GMSL (Table 3).
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contrast, net storage trends from models are negative
(Š12 to Š450 km3/y), indicating that models fail to capture
GRACE-derived land water storage increases at the decadal
time scale.

iv) The large spread in net TWSA trends among models (summed
over all basins) results in opposite contributions to GMSL
change relative to estimated contributions from GRACE,
highlighting uncertainties in modeled estimation of GMSL.

v) Subtracting modeled net land water storage trends related to
human intervention from GRACE trends (human + cli-
mate) results in climate contribution to land water storage
and GMSL that exceeds human intervention by about a
factor of 2 over the past decade.

vi) Primary causes of model-GRACE discrepancies include lack
of SWS and GWS compartments in most LSMs, low storage

capacity in all models, uncertainties in climate forcing, and
lack of human intervention in most LSMs.

The results of this analysis highlight the challenges for models to
capture large historical water storage trends derived from GRACE
satellites, implying that model projections may underestimate fu-
ture climate and human-induced water storage trends.

Data and Analysis
Detailed descriptions of data sources and analyses are provided
in SI Appendix.
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