Earth Land Use

A Broad General Study by Bernie McCune

January 28, 2011

Getting Started

- This began as a search to determine just how much of the earth's land surface was used for urban area
- It quickly blossomed into much more than this simple task
- I decided to document the information that I found

Characteristics of the Earth

- Surface of the Earth is water 70.8\% (361.132 million km^{2}) and land 29.2\% (148.94 million km^{2})
- Land use of the 29.2% of the land surface:
- Arable Land 10.6\% (Annual Crops 4.71\%)
- Permanent Pastures 26\%
- Forests and Woodlands 32\%
- Urban Areas 2.4\%
- Other 29%

Majority of above data based on CIA World Factbook

Definitions are Important

- Most of the values noted on the previous slide are generally open for discussion
- Though there has been much effort to tightly define terms, dividing lines do begin to blur some and the percentage of land encompassing these land types may vary some
- Certain caveats must be carefully stated when using these values

Land Use Arable Land

- Arable land is generally defined as land that can be used for growing crops
- In this presentation, land found in pastures and forests that might be consider arable is excluded for detailed comparison
- A figure of 13% for total global arable land is based on readily converting certain "non-arable" land to crop land (which includes some arable forest land)

Arable Land Continued

- This larger value is better defined as "potential arable land" (some believe the true potential is about 26\%)
- Most experts use a definition of arable land that is based on existing useable arable land and indicates that it is 10.6\% of global land
- China has about10\% of the earth's arable land

Arable Land Continued

- Annual crop land use (includes crops not replanted each year or 1% of global land) is 4.7% of the global land surface or almost 50\% of global arable land
- Total annual crops on average cover about 7 million km^{2} of the globe (2.77 million km^{2} of which is irrigated)
- By definition, none of the crops noted above include timber or pasture products

Willis Eschenbach's Crop Research Slide

Potential Arable Land

- Economic and environmental issues generally drive the potential for expanding arable land resources
- Water and soil nutrients tend to be the limiting factors for meeting arable land requirements
- The Israelis have turned desert land into arable land

Potential Arable Land Continued

- Many of the world's pastures and steppes have the potential to be arable land (temperatures will limit alpine land's productivity)
- Generally for pastures the limits to "arable" land are also water and/or nutrients
- Forest land, even though some of it (besides the natural growth) is presently arable, is by definition not included in the arable land category

Land Use - Pastures

- Permanent pastures cover 26% of the globe's land surface
- A permanent pasture is an established plant community in which the dominant species are perennial grasses, there are few or no shrubs and trees are absent
- These pastures may blur the boundaries of some natural grasslands (alpine meadows, Mongolian steppes, etc)

Pastures Continued

- Pasture land is not defined as arable land even though much of it is - some part of the "semi-arable" pastures, grasslands, and steppes of the world could, with effort and financial resources, be made "arable"

Forests \& Woodlands

- Forests and Woodlands cover 32% of the global land area (47.66 million km^{2})
- About half of these forests are located in Russia which have very slow growth rates due the extreme cold (mostly in Siberia)
- Northern hemisphere countries have "expanding" forests in recent decades
- Southern hemisphere countries have "diminishing" forests (often in the extreme) in recent decades

U.S. Forests - A few facts

- After continuous declines in forest area until the 1920s, US forests have stabilized and then gradually expanded in area until they are now more than 70\% of the original forest (that existed in the early 1600s)
- Since the 1920s eastern forests have staged a major comeback
- Presently of the more than one billion acres in crop and forest land, forests today total 737 million ac. - in the 1600s forests alone covered a little over one billion ac.

U.S. Forests Continued

- Forest wildlife has increase in some cases 10 fold since the early 1900s. Wild turkeys were almost extinct and now number almost 5 million. Prong horns too were close to extinction but are now in the 100s of millions
- Government forest ownership is 28% (of that National Forests are 18\%) Forest Industry is 15\%
Other private ownership is 57\%

"Other" Land

- Other land by most accounts make up about 30% of the rest of global land area -the value of "Other" land (29\% of global land surface (43.25 million km^{2}) is used in this presentation so that all the categories total to 100\%)
- "Other" land covers a wide variety of land
- This includes deserts (which make up more than half of "Other" land), permanent ice, tundra, wild grasslands, steppes, mountains, rocky coasts, salty, polluted, coral atolls, etc

Urban Land Use

- Until recently most studies have used 1.5\% of global land as urban (CIA included)
- The definition of urban seems to wander between the use of population density (preferred), light pixels at night, and/or surface disruption characterizations
- With the advent of more detailed satellite image analysis new values of land use seem to favor a higher value of perhaps 3\%

Urban Land Continued

- Some reliable sources claim that 3% has been fudged too high and that 2.4% is probably closer to the correct number
- $2.4 \%=3.575$ million km^{2}
- There is some controversy on this point but I expect to see more effort and greater accuracy of this value in the next few years
- In 2010 about half the world's population lived in urban areas (3.5 billion) while about 3.4 billion lived in rural areas

Urban Land Continued

- I found a study that estimated that roads and parking lots covered between 1.5 to 2% of the world's land surface
- I am assuming that a significant portion of roads and parking lots are already included in the 2.4% value of urban land use

The ultimate land use question What population can the earth support?

- A book and a paper written in 1967 by Colin Clark titled "Population Growth and Land Use" documented a very detailed study of this subject
- These documents are sometimes criticized because of their use of extreme scenarios
- Clark however, did, at least, delve deeply into the methodology and the available data

Max Population?

- He was criticized for grading land by its location and he graded tropical land as twice as productive as land in most other parts of the earth
- However, this technique is now widely accepted
- Clark reached his ultimate conclusions based on the use of most of the earth's land surface (61.5\%) to grow food and fiber
- A more ecologically sound method that might actually be pursued would be to double global arable land to 21% in a carefully planned process
- Clark's carrying capacity values would then be $1 / 3$ of the values that were given in his original research

Max Population?

- Clark proposed no miracle scenarios to save us
- Land, water, and food issues were covered in great detail
- Food and fiber in the final analysis became the limiting factor
- Energy issues were considered resolvable (negotiable or to be solved by a few technological breakthroughs)

Max Population?

- Using the so called "Dutch" diet (European or scaled down American) - capacity is 28 billion people (realistically 9.3 billion)
- Using the "Asian" diet - capacity is 47.6 billion (realistically 15.85 billion)
- With a subsistence diet with most of the population on the brink of starvation the capacity is 157 billion (realistically 52.3 billion)
- Today there is a global mix of these 3 diets with a large majority of the planet's diet found in the 2 nd and 3 rd categories

Actual Expected Population

- To Peak at about 10 billion later in this century

[^0]
Closing Thoughts

- Land use questions grew out of climate issues and questions about where surface temperatures were being measured (mostly in urban areas?)
- Earth carrying capacity studies are always very controversial
- Also there were questions about how badly we have "trampled" the land environment

More Closing Thoughts

- And just generally "how bad is it?"
- A surprise - not really that bad on the ground except, perhaps, in some densely populated urban areas
- And in some very poor countries
- Some specific air, soil, \& water quality issues are also ongoing in some parts of the globe

Environmental Issues

- Poor and deteriorating soil conditions have natural and man-made reasons behind them
- The U.S. has made vast improvements in air and water quality over the past 50 years
- But some water use issues continue to plague us - mostly due to cyclical droughts (near term global cooling may alleviate this)

Finally

- As always my study leads to further questions and studies
- One in particular - why are NH forests expanding and SH forests (especially in Australia) shrinking?
- Will increasing CO^{2} concentrations help "solve" some of our food subsistence issues?
- Does surface temperature measurement (especially if it is mostly done in cities) tell us much about global climate?

[^0]: Figure 2. Annual increase in population as a percentage, 1961 to 2008.

